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You may associate the word "relativity" with mathematical mystery 
and scientific complexity, yet the basic concept, which we will try to 
explain in these pages, is simple. The matters of concern in relativity 
are the position (location) and motion of objects. The basic concept is 
that position and motion of an object can only be perceived, described, 
and recognized with reference to (that is, "relative" to) other objects. 
When you say, "The physics books are at the left rear of the book 
store," you refer the position of the books to the entrance and outline of 
the store. Objects such as the store entrance, to which position or mo-
tion are related, are called reference objects. Several reference objects 
used in combination to describe position are said to form a reference 
frame (or frame of reference), and we speak of the position or motion 
of the original object relative to the reference frame. 

If we know the position and motion of an object relative to one refer-
ence frame, we might ask about the position and motion relative to a 
second reference frame. This is the root of the theory of relativity: de-
velopment of specific mathematical models for relating position and 
motion as observed relative to one reference frame to position and mo-
tion as observed relative to another reference frame. Einstein's theory 
of relativity is the most complete theory of these relationships. We will 
describe some aspects of Einstein's work in Section 7.3, but we will not 
go into the mathematical details in this text. 

2.1 Relative position 
Look at the girl in the field of daisies (Fig. 2.1). How would you tell 

someone where she is? Most directly, you could go to the edge of the 
field and point at her, saying, "The girl is there." By this action, you 
indicate the position of the girl relative to your outstretched arm and 
finger. 

If you had to describe the girl's position to someone who was not 
watching, you could say, "She is a little way in from the south edge of 
the field, near the southeast corner." This statement indicates her posi-
tion relative to the edges and corners of the field. In other words, it is 
impossible to describe the position of the girl (or of anything else) 
without referring to one or more other objects. Even if you were to 
draw a map of the girl's position, you would have to include on it some 
objects that could be used to align it with the actual field. 

Reference objects and reference frames. For practical purposes, the 
reference objects must be easy to locate and identify, or they cannot be 
used as guides in finding the object whose position is being described. 
It would be hopeless, for example, to try to find the girl in the daisy 
field if her position were described by saying, "The girl is between two 
daisy blossoms." Something more distinctive is needed: the edges and 
comers of the field, as used earlier, or possibly a scarecrow at the center 
of the field. 

The use of reference objects in everyday life is highly varied and 
adapted to many special circumstances. A piece of furniture, corners of 

The word position has 
several meanings, two of 
which, "posture or atti-
tude" and "site or loca-
tion," are easily con-
fused. We will use the 
word position always 
with the latter meaning. 

In physics, the terms 
"relative position" and 
"relative motion" refer to 
the fact that position and 
motion must be defined 
"relative to" or "in rela-
tion to" something other 
than the object itself. 

In common speech, we 
often simply use our-
selves or the earth as the 
reference object without 
saying so. For example, 
we say, "The moon is far 
away," or "The train is 
moving." It usually seems
unnecessary to say "The 
moon is far away from 
me." or "The train is 
moving with respect to 
the station." However, in 
physics we often must 
describe motion from 
various reference frames, 
including especially 
those in which we are not
at the origin and/or in 
which we are not at rest. 
Therefore, whenever 
there is any possibility of 
confusion, we will explic-
itly name the reference 
frame, and you should do 
the same. 

Introductory Physics: A Model Approach by Robert Karplus is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.



32 

a room, street intersections, or a tall building can be used as a reference 
frame for the complete description of the location of a residence, res-
taurant, or mailbox. 

Examples. An imaginary conversation is recounted in Fig. 2.2. What 
happened in this conversation? What finally allowed Percy to commu-
nicate the location of the hawk without confusion, ambiguity, or ab-
surdity? First, he established a reference frame by selecting a large, 
easily identifiable branch on the tree and pointing in the direction of the 
tree. Clyde could grasp this reference frame. Next, Percy specified the 
direction ("above it") and distance ("the second branch") from the 
branch to the hawk. 

The reference frame first used by Percy consisted of a reference point 
(Percy's body) and a reference direction (along Percy's pointing finger). 
These two components are necessary parts of a reference frame and are 
defined through more or less easily identified reference objects or 
earth-based directions, such as north and up. Percy's initial attempt to 
use the tree as reference point failed because there were several trees. 

One of the most difficult communications problems is to give in-
structions for locating a book to a person who is not acquainted with 
the room in which the book is kept. In such a case it is most helpful to 
use the person's body as the reference frame by telling him to stand in 
the door to the room, look for the bookcase on his left, and then scan 
the middle of the second shelf of that bookcase. This example illus-
trates how you might use large elements of the environment (the room) 
to locate smaller ones (the person, and directions defined by the body), 
and then still smaller ones (the bookcase, ultimately the book) by a nar-
rowing down process. 

Describing position is more difficult when you do not have any refer-
ence objects to use for a narrowing down process. For example, a pas-
senger on a ship who observes something in the ocean faces this prob-
lem. In these circumstances you would have to start with the ship you 

Figure 2.1  Can you find 3 children hiding among the daises? Describe their 
relative positions. 

An overdose of relativity. 
Mr. Jones was going to a 

doctor's office and had 
never been there before. He 
called the doctor's office to 
ask for directions. After the 
receptionist told him how 
to get there, he asked 
whether it was on the north 
or south side of the street. 

The response: "It de-
pends which way you're 
walking." 

Introductory Physics: A Model Approach by Robert Karplus is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.



Chapter 2 - Reference frames 33 

are on and work outward. You may sight a flying fish "500 yards off the 
starboard bow" (ahead and to the right), using the ship as reference 
frame. You could say instead that the fish is "500 yards northwest," us-
ing the ship as reference point and compass directions to complete the 
reference frame. 

One-particle model. So far we have been content with describing the 
position of a very small object that is located at a certain point in space. 
Real objects, of course, actually occupy an entire region of space, 
which may be small or large, round or thin, upright or slanted. For a 
complete description of an object, you therefore should take into ac-
count its shape and orientation as well as its location. A useful approach 
that avoids much unnecessary detail is to make a one-particle model for 
each object of interest. A particle is a very small object 

Figure 2.2  Percy and Clyde took a long walk through the county of McDougall. 
Percy: Clyde, do you see the falcon sitting in that tree over there? 
Clyde: What falcon? In which tree? Where? 
Percy: In that big, broken tree over there (pointing his finger). 
Clyde: Oh, that tree in front of us! I see it, but I don't see the falcon. 
Percy: It's on the branch. 
Clyde: There are too many branches. I give up. Let's forget it. 
Percy: No, let's start over again. Do you see that broken branch about halfway 

up the trunk on the right side? 
Clyde: Yes, I do. 
Percy: Fine. Now look at the second branch above it, on the same side of the 

tree. Now move to the right and you just have to see the falcon. 
Clyde: Oh sure, but that's a hawk. 

Introductory Physics: A Model Approach by Robert Karplus is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.



34 

that is located at the center or midpoint of the region occupied by the 
real object (Fig. 2.3). This working model greatly oversimplifies most 
objects, but is nevertheless accurate enough for most purposes in this 
text. 

Coordinate frames. The laboratory scientist, who tries to describe 
natural phenomena in a very general way, avoids using incidental ob-
jects such as the laboratory walls or table surfaces as reference objects. 
Instead, a scientist frequently uses a completely artificial reference 
frame consisting of an arbitrarily chosen reference point and reference 
direction. The only requirement is to be able to describe the position of 
objects by using numbers. The numerical measures are called coordi-
nates; the reference frame is called a coordinate frame. Two coordinate 
frames in common use are degrees of latitude and longitude, to define 
position on the earth relative to the equator and the Greenwich merid-
ian, respectively, and distances measured in yards from the end zones 
and the sidelines on a football gridiron. 

Polar coordinates. The procedure of giving the distance from the ref-
erence point and the direction relative to the reference direction gives 
rise to two numbers called polar coordinates. The distance may be 
measured in any unit, most commonly in meters, centimeters, or milli-
meters. The relative direction is usually measured in angular degrees. 
How this works is shown in Fig. 2.4. The necessary tools are a ruler to 
measure distance and a protractor to measure angles. Polar coordinates 
provide an operational description of the relative position of a point. 

A polar coordinate grid, from which you may read the polar 

Figure 2.3 Two applications of a one-particle model.  
(a) An X represents each football player. Eleven " particles" represent the team. 
(b) A working model for the baton is the particle at its center. 
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coordinates of a point directly, is shown in Fig. 2.5. We shall indicate 
the relative position of the point P by an arrow in the diagram and by 
the boldface symbol s in the text. The polar coordinates will be indi-
cated by the length of the arrow sr (r for radius) and the direction of the 
arrow sθ (Greek θ, theta, for angle), as indicated in the figure. Angles 
are customarily measured counterclockwise from the reference direc-
tion. 

Examples. An example of the application of polar coordinates is 
shown in Fig. 2.6. The surveyor is using the direction of the road as the 
reference direction and the location of his tripod as the reference point. 
Some of the measurements he has made are given in the figure. These 
measurements may be used to make a map by locating the objects on a 
polar coordinate grid, as in Fig. 2.7. Polar coordinates have the intuitive 
advantage that they represent relative position in the way a person per-
ceives them, namely, with the objects at various distances in various 
directions from the observer at the center. 

Polar coordinates are used to direct aircraft to airports, with the con-
trol tower as reference point and north as the reference direction, as 
well as in other situations where a unique central point exists (e.g., in 
radar surveillance with the transmitter acting as reference point). 

 

Figure 2.4  Polar coordinates of the 
point P relative to the reference point 
0 and the reference direction indicated 
by the arrow. 

Figure 2.5  Polar coordinates of the point P which has rela-
tive position s = (sr, sθ) =  (3 cm, 80°). 

The reference point in polar 
coordinates is called a pole 
because the grid lines con-
verge on it, as do the meridi-
ans at the poles of the earth. 

sr and sθ are examples of 
variables with subscripts. The 
subscripts (r and θ) indicate 
that the main variable (s) has 
two (or more) distinct values. 
The subscripts can also be 
numbers, for example  s1, s2, 
s3 and so on. 
 
You should also be aware of 
the difference between the 
meaning of subscripts (de-
scribed above) and super-
scripts, for example s3 , which 
means s × s × s. 
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Figure 2.6 
Polar coordinates. 
 direction distance 
tree A 80º 10 m 
tree B 270º 6 m 
tree C 10º 31 m 
windmill 40º 38 m 

Figure 2.7  The position of the objects in Fig. 2.6 
is mapped on a polar coordinate grid. 
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2 2 , see Ex. 2.1, below.r x ys s s= +

Rectangular coordinates. A particularly useful technique for describing 
relative position that we will employ extensively later in the course 
makes use of two lines at right angles to each other called rectangular 
coordinate axes (Fig. 2.8). They are usually labeled the x-axis and y-
axis. Their point of intersection is called the origin of coordinates. Dis-
tances are measured to the desired point Q along lines perpendicular to 
each axis, and the two measurements obtained are called the rectangu-
lar coordinates of the point Q relative to the two axes. As before, we 
introduce the boldface symbol s for the relative position of a point and 
use ordinary letter symbols with subscripts for the rectangular coordi-
nates, this time sx and sy. The relative position of point Q is indicated by 
an arrow from O to Q in Fig. 2.8, just as it was in Fig. 2.5. Sometimes, 
for the sake of brevity, we will write the rectangular position coordi-
nates in square brackets, with sx first and sy second: [sx , sy ] (Fig. 2.8). 

You can see that the rectangular coordinates, unlike polar coordinates, 
do not give directly the distance sr of a point from the origin. You can 
find the distance, however, by applying the Pythagorean theorem (Ap-
pendix, Eq. A.5) to right triangle QTO in Fig. 2.9, where the distance sr 
is the length of the hypotenuse OQ: 

Figure 2.8  Rectangular coordinates
sx and sy of the point Q, whose rela-
tive position is s =  [sx, sy] = [3.0, 
4.0]. The two rectangular axes are 
indicated by arrows, and the origin 
of the coordinates by O. 

Figure 2.9  Here Fig. 2.8 is redrawn 
to show the rectangular and polar 
coordinates of the point Q. These 
are related by means of the right 
triangle QTO. 

Rectangular coordinates 
are sometimes called Car-
tesian coordinates, after 
René Descartes. Descartes, 
a French philosopher, first 
described this coordinate 
frame in the Discourse on 
Method, published in l637. 
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EXAMPLE 2.1. Relate the polar coordinates of the point Q to its rec-
tangular coordinates (Fig. 2.9) sx = 3.0, sy = 4.0. 

Solution: 
(a) To find sr use the Pythagorean theorem (Appendix, Eq. A.5). 

0.50.25)0.4()0.3( 2222 ==+=+== yxr ssOQs  

(b) To find θs , use the definition of the trigonometric ratios (Ap-
pendix, Eq. A.6): 

 4.0( ) 1.33
3.0

y

x

s
tangent s

sθ = = =  

  53sθ ≈  (from Table A.7) 
 
Rectangular coordinate frames, unlike polar coordinate frames, do not 

have a single center, as you may observe easily when you compare the 
polar and rectangular coordinate grids in Fig. 2.5 and 2.8. Whereas 
there is a unique reference point, the "pole," in the polar grid, it is pos-
sible to use any point in a rectangular grid as reference point by se-
lecting the horizontal and vertical lines passing through this point as x 
axis and y axis. With R as reference point in Fig. 2.10, for instance, the 
point Q has the rectangular coordinates [5, 1], as you may verify in the 
figure. Rectangular coordinates, therefore, are advantageous when you 
are interested in the position of two points or objects relative to one 
another, rather than only relative to the origin of the coordinate frame. 
We will use this feature when we calculate changes in the position of a 
moving object. 

2.2 Relative motion 
So far we have considered ways of describing the relative position of 

objects that are stationary. Now, consider objects that change position. 
When an object changes position, you commonly say that it "moves," 
or that it is "in motion." But what do you mean by "motion?" Since po-
sition is defined relative to a reference frame, it is plausible to expect 
that motion would also be defined relative to a reference frame. It is 
therefore customary to use the phrase "relative motion." 

Examples of relative motion. Imagine that a truck moving on a road-
way is being described relative to two different reference frames. Ref-
erence frame A is attached to the roadway, reference frame B to the 
truck. To make the description simpler and more concrete, we will in-
troduce two observers, one representing each reference frame (Fig. 
2.11). 

As the truck moves down the road, Observer A reports its position 
first on his left, then in front of him, then on his right. The position of
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the truck relative to Observer A has changed. But Observer B always 
reports the truck as being in the same position, with the platform under 
his feet and the driver's cab on his left. The position of the truck relative 
to Observer B, therefore, has not changed from the beginning to the end 
of the experiment. Thus, you find that you have two different sets of 
data, one from each reference frame. In one reference frame you would 
conclude that the position had changed, and in the other that it had not. 
If we define relative motion as the change of position relative to a ref-
erence frame, then the two observers disagree (but each is correct) not 
only with regard to the relative position of the truck at various times in 
the experiment, but also about the truck's relative motion. 

We can extend the discussion to motion of other objects. For instance, 
does the earth move? This depends on the reference frame used to de-
fine the earth's position. Relative to a reference frame attached to the 
earth, to which we are all accustomed, the earth is stationary. Relative 
to a sun-fixed reference frame, which was introduced by Copernicus 
and about which you probably studied in school, the earth

Figure 2.10 (above) The point R 
is chosen as reference point for 
describing the relative position 
of Q. The coordinates of Q rela-
tive to R are [5, 1]. (Note the 
reduced scale of the diagram 
compared to Figs. 2.8 and 2.9.)

Figure 2.11 The motion of the truck is de-
scribed relative to the reference frame repre-
sented by Observer A and relative to the 
reference frame represented by Observer B. 
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moves in its orbit. In Chapter 15 we shall describe the resistance which 
Copernicus and Galileo encountered when they took the sun-fixed ref-
erence frame seriously. 

Look at some of the consequences of this concept of relative motion. 
(You may find these consequences fascinating or merely strange, de-
pending on how willing you are to break out of habitual modes of 
thinking.) In order to determine the position and motion of objects in an 
experiment, it is important to decide upon a reference frame. You have 
already noted that observers may disagree about the relative motion of 
an object. You must also recognize that an observer will always report 
an object to be stationary in his own reference frame so long as he is 
attached to that object. Such an observer's report about the motion of 
the remainder of the world will seem unusual indeed, if the observer's 
reference frame is attached to a merry-go-round, a satellite in orbit, or 
even a sewing machine needle. 

Speed and relative motion. Another consequence of the relative mo-
tion concept is that different observers might disagree about the direc-
tion and the speed of a moving object they both observe. Think about 
the following example, in which an object is reported to travel at differ-
ent speeds relative to different reference frames. 

The speed of a riverboat going upstream as reported by its passengers 
looking at the shoreline is a snail-like 1 mile per hour, but the speed as 
reported by the captain is a respectable 10 miles per hour. Who is right? 
All steering and propulsion take place in the reference frame of the wa-
ter. The motion of a riverboat relative to the shore is different from its 
motion relative to the water unless the water is still. Since the water is 
flowing downstream at a speed of 9 miles per hour (relative to the 
shore), and the riverboat is traveling upstream at a speed of 10 miles 
per hour (relative to the water), the speed of the riverboat (relative to 
the shore) is 1 mile per hour. Thus, the conflicting reports of the two 
observers are understandable and correct, for they are observing from 
different reference frames. The question, "Who is right?" can only be 
answered, "Each is right from his own point of view."      

Here is a second example, in which we would like you to imagine you 
are each of the observers in turn: 

 
Three cars, A, B, and C, are traveling north on a highway at speeds of 

55, 65, and 75 miles per hour, respectively. Observers attached to each 
car make the following reports. 

 
Observer in car A: Relative to me, car B is traveling north at 10 miles 

per hour, car C is traveling north at 20 miles per hour, car A (my car) 
is stationary, and the roadside is traveling south at 55 miles per hour. 

 
Observer in car B: Relative to me, car A is traveling south at 10 miles 

per hour and car C is traveling north at 10 miles per hour. 
 
Observer in car C: Relative to me, car B is traveling south at 10 miles 

per hour, and car C is stationary. 

What does the observer in car 
B report about the speed of 
the roadside? What does the 
observer in car C report 
about the speed of car A and 
the roadside? 

"For every apparent change 
in place occurs on account of 
the movement either of the 
thing seen or of the spectator, 
or on account of the neces-
sarily unequal movement of 
both. For no movement is 
perceptible relatively to 
things moved equally in the 
same directions — I mean 
relatively to the thing seen 
and the spectator. Now it is 
from the Earth that the celes-
tial circuit is beheld and pre-
sented to our sight. There-
fore, if some movement 
should belong to the Earth . . 
. it will appear, in the parts of 
the universe which are out-
side, as the same movement 
but in the opposite direction, 
as though the things outside 
were passing over. And the 
daily revolution . . . is such a 
movement." 

Copernicus
De Revolutionibus

Orbium Coelestium, 1543
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Recording and reproducing relative motion. Since relative motion is 
a transitory phenomenon, it cannot be recorded on a diagram or map 
with the ease with which relative position can be recorded. The motion-
picture film is the most familiar way of recording and recreating rela-
tive motion. 

Motion pictures. Motion pictures consist of a strip of photographs 
(Fig. 2.12) that show a scene at very short intervals (approximately 
1/24 second). Of course, the scene changes, but does not change much 
in this short time. When the pictures are rapidly projected in the correct 
order, the viewer's eye and mind perceive smooth motion. If the pic-
tures are taken with too great a time interval, so that the scene changes 
significantly between, then the smooth motion becomes jerky. 

Flip books. Another way to represent relative motion is through flip 
books. Flip books create the illusion of motion through the same device 
as motion pictures, a series of pictures that show the same scene with 
slight changes in appearance. The pictures are bound in a book and are 
viewed when the pages of the book are flipped. With a flip book, you 
can examine each individual scene more easily than with a motion pic-
ture, you can control the speed, and you can view the sequence both 
"forward" and "backward" by starting at the front or the back of the 
book. 

Multiple photographs. Still another technique for representing but not 
recreating motion is the multiple photograph. This is produced by tak-
ing many pictures at equal short time intervals on the same piece of 
film as in the example shown in Fig. 2.13. The multiple photograph 
gives a record of the path of the racquet and of the ball during a serve. 

Blurred photographs. Even a single photograph can give evidence of 
motion when the camera shutter remains open long enough for the im-
age projected onto the photographic film to change appreciably.

Figure 2.12  A section of motion-picture film 
taken at high speed, showing an arrow burst-
ing a balloon. Harold Edgerton, the master 
of high speed photography, took the photo-
graph by means of a rotating prism synchro-
nized with a strobe [regularly flashing] light. 
In 1940, Edgerton won an Academy Award 
for movies made with this type of camera. 
For other photos by Edgerton see Stopping 
Time by G. Kayafas, listed in the bibliogra-
phy at the end of this chapter. 

Figure 2.13  Multiple expo-
sure photograph of a tennis 
serve, taken by Harold 
Edgerton. Can you esti-
mate the time interval be-
tween exposures? 

Photos on this page copyright 
© Harold and Esther Edger-
ton Foundation, 2003, cour-
tesy of Palm Press, Inc. 
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This can happen either because the photographic subject moves (Fig. 
2.14), or, as every photographer knows, because the camera moves. In 
other words, the significant fact is motion of the subject relative to the 
camera. Indeed, an experienced photographer can "stop" the motion of 
a racing automobile by purposely sweeping his camera along with the 
automobile (Fig. 2.15). The automobile appears sharply in this picture, 
but the background, which was moving relative to the automobile and 
therefore relative to the camera, is blurred. 

Example. An illustration of how significant relative motion can be 
was discovered by Berkeley physicist Luis W. Alvarez in a magazine 
reproduction of part of a motion-picture film showing the assassination 
of President John F. Kennedy. The President was riding in a motorcade, 
and Alvarez noticed something exciting in photograph 227: the motor-
cade in the photo was blurred, but the background and foreground were 
sharp. This was in contrast to most other photos, where the background 
was blurred and the motorcade was sharp. Apparently, Alvarez rea-
soned, the photographer had been sweeping his camera sideways to 
keep it lined up with the moving car but had suddenly stopped the 

 

Figure 2.15 The 
racing car is sta-
tionary relative to 
the camera. Were its 
wheels stationary? 

Figure 2.14  How 
many people are 
shown in this pic-
ture? 
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motion for a fraction of a second. The film, which showed the relative 
motion of camera and photographed objects by a steady change in pic-
ture from frame to frame, showed a change in this relative motion, a 
change that Alvarez ascribed to the photographer's neuromuscular reac-
tion to the sound of a rifle shot. Further investigation of the original 
film in the National Archives, and of human flinching reactions to sud-
den sounds, confirmed Alvarez's interpretation of the blurred motor-
cade as evidence that a rifle was fired at that instant. 

Definition of speed. Up to this point we have used the word "speed" 
without defining it. Automobile speed in miles per hour is usually read 
directly off the dial of a speedometer, the speed of a runner is expressed 
in his or her times for a particular distance, wind speed is indicated by a 
device called an anemometer, and so on. To be comparable with one 
another, these speeds must all be derived from the same definition. As 
the unit of speed (miles per hour) suggests, the generally accepted defi-
nition (at left) is the rate at which distance is traversed (Eq. 2.1). 

This definition can be applied whenever a distance and a time meas-
urement have been made. You are probably familiar with the highway 
"speedometer checks," roadside markers that identify a one-mile 
stretch; by driving at a steady speed and observing the time required to 
traverse the distance, you can calculate the speed (Example 2.2). 

EXAMPLE 2.2. Find the speed if the distance traversed and the time in-
terval are given. 
 
(a) 2.5s m∆ =   sec5.4=∆t  

 2.5 0.56
4.5av

s mv m/sec
t sec

∆= = ≈
∆

 

(b) 140s m∆ =   sec4.0=∆t  
   

 140 350
0.4av

s mv m/sec
t sec

∆= = ≈
∆

 

(C) 1s mile∆ =   min4=∆t    

 1 0.25
4av

s milev mile/min
t min

∆= = ≈
∆

 

    15 (15 0.45) 6.8mph m/sec = m/sec= ≈ ×  

The definition can be applied in many other circumstances, too, where 
the distance and time interval may be measured in any convenient unit. 
The speed of a taxicab in a large city, for instance, may be described as 
six blocks per minute, the speed of a bus may be only three blocks per 
minute, the speed of an elevator may be one floor in three seconds (one-
third floor per second or 20 floors per minute), and so on.

av

av

distance traversed s
(pronounced "delta ess")
time interval         t
(prounced "delta tee")
average speed      v

sv
t

= ∆

= ∆

=

∆=
∆

Equation 2.1

 
Note: The "∆s" and "∆t" 
symbols stand for single 
quantities and do not indi-
cate multiplication of ∆ by 
"s" or by "t". The meaning 
of the ∆ symbol will be 
explained further below 
(Section 2.3). 

FORMAL DEFINITION 
The average speed is equal 
to the ratio of the distance 
traversed divided by the 
time interval required to 
traverse the distance. 

Units of speed: 
meters per second (m/sec) 
miles per hour     (mph) 
feet per second    (ft/sec) 
 
1 m/sec ≈ 2.2 mph  ≈ 3.3 
ft/sec 
 
1 mph ≈ 0.45 m/sec  ≈ 1.5 
ft/sec 
 
(≈ indicates approximately 
equal) 
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You can convert from one to another of these units of speed if you know 
how the units of distance and time compare (number of feet per floor, 
number of seconds per minute). 

Curiously, the work of Galileo, who was the first to investigate moving 
bodies systematically and quantitatively, contains no reference to this 
idea of speed as a numerical quantity (v) equal to the ratio of distance 
divided by time. Instead, he always compared two or more speeds with 
one another (often by comparing the times to go equal distances, or by 
comparing the distances traveled in equal times), and he was able to de-
rive and state his results by using ratios of distances (or times) to one 
another. One of Galileo's major contributions was a clear understanding 
of what we now call "average speed" and "instantaneous speed." We now 
explain these two key concepts. 

Average speed. When you think of a bus making its way in city traffic, 
you immediately realize that the speedometer reading has little direct 
connection with a measured speed of, say, three blocks per minute. After 
all, the bus is stopped a good fraction of the available time. The speed-
ometer needle may swing from 0 miles per hour (the bus is stopped) up 
to 20 or even 30 miles per hour while the bus is moving, and then back to 
0 miles per hour again at the next stop. If you count how many blocks the 
bus travels in a minute, you include the stops and the motion. The speed 
determined in this way is called the average speed, because it is an aver-
age value intermediate between the maximum and minimum values. The 
average speed is always referred to a certain distance or time interval, 
such as the average speed over a mile of highway (speedometer check) or 
in a minute of city driving (bus and taxi examples). A car that required a 
minute to drive 1 mile on the highway was traveling at the average speed 
of 1 mile per minute, 60 miles per hour, or about 90 feet per second. 

Instantaneous speed. After this explanation, you may wonder what the 
car's speedometer indicates. The speedometer indicates the "actual 
speed" of the car. The actual speed is equal to the average speed if the car 
is driven steadily without speeding up or slowing down. In this way the 
speedometer check can be used as intended by the highway builders. In 
other words, the average speed, which can be measured in the standard 
units of distance and time, is used to calibrate the speedometer dial. 

There is a second relation between average speed and actual speed – a 
relation that has led to the term instantaneous speed for the latter. Imag-
ine the average speed measured during a very short time interval, such as 
1 second or less. During such a short time interval, the car has barely any 
possibility of speeding up or slowing down. Hence the average speed in 
this short time interval is practically equal to the actual speed. Since a 
very short time interval is called an instant, the name instantaneous speed 
is generally used (Eq. 2.2). 

How short is an "instant"? The instant is defined to be so short that the 
speed of the moving object does not change appreciably. Just how short 
it must be depends on the motion that is being studied. For a car that ac-
celerates from a standing start to 60 miles per hour in 10 seconds, the 
instant must be considerably shorter than 1 second. For a bullet being 
fired, an instant must be very much shorter yet, for the entire time inter-
val during which the bullet accelerates inside the gun barrel is much, 

"If two particles are car-
ried at a uniform rate, the 
ratio of their speeds will be 
the product of the ratio of 
the distances traversed by 
the inverse ratio of the time 
intervals occupied." 

Galileo Galilei
Dialogues Concerning Two

New Sciences,
1638

FORMAL DEFINITION 
The instantaneous speed is 
equal to the average speed 
measured during an "in-
stant." An instant is a time 
interval short enough that 
the speed does not change 
to a significant extent. 

OPERATIONAL DEFINI-
TION 
The instantaneous (or ac-
tual) speed is equal to the 
number shown by a speed-
ometer.  

(

instantaneous speed = v

sv
t

t  is an instant, an 
interval of time chosen
short enough so that the
speed does not change
to a significant extent.)

∆=
∆

∆

Equation 2.2
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a v

∆ s
vt∆ =

much shorter than 1 second. At the other extreme, consider the ice in a 
glacier slowly gliding down a mountain valley. For this motion, even a 
day may be a brief instant because years elapse before the speed changes. 

Applications. Since the average speed is defined by means of a mathe-
matical formula (∆s/∆t), you can use mathematical reasoning (Section 
A.2) to solve a variety of problems. For instance, you can compute the 
distance traversed by a moving object if you know its average speed and 
the travel time (Section 1.3, Eq. 1.2, and Fig. 1.6). Or you can compute 
the time required for a trip if you know the average speed and the dis-
tance to be covered. These ideas are illustrated in Example 2.3. 
 
EXAMPLE 2.3 

 
(a) Find the distance if the average speed and time interval are given. 
How far does a pedestrian walk in 1.6 hours? 
 

Solution: We wish to use Equation 2.1 to find ∆s; thus we multiply 
both sides of Equation 2.1 by ∆t to get:  ∆s = vav ∆t 
 
For a pedestrian we can estimate vav ≈ 3 mph and ∆t = 1.6 hours. 
Thus ∆s = vav ∆t = 3 mph x 1.6 hours ≈ 5 miles. 

 
(b) Find the time interval required if the average speed and distance are 
given. If a bullet's average speed is 700 m/sec, how long does a bullet 
take to travel 2000 meters? 
 

Solution: We wish to find ∆t; thus we multiply both sides of Equa-
tion 2.1 by ∆t and divide by vav to get:  
 
For the bullet, 

 
2.3 Displacement 

The concept connecting relative position with relative motion is the 
change of relative position, which enables you to apply coordinate 
techniques to motion. For example, when a particle moves from one 
point R to another point Q (Fig. 2.16), then its position relative to any 
reference point fixed on the page changes. The change in position of a 
moving object is called the displacement because you can think of the 
moving object being displaced from one point to the other, from R to 
Q. By marking the successive displacements of a moving object, you 
can trace its path in space (Fig. 2.17). 

The symbol for displacement is the boldface ∆s with the Greek ∆

3

700
2000

2 10 0.28 10 2.8

2
av

3

2
av

v m/sec  7 10 m/sec
s m  2 10 m

s mt sec.
v 7 10 m/sec

= = ×
∆ = = ×

∆ ×∆ = = ≈ × =
×
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(delta) standing for "difference" and s standing for relative position. 
The boldface symbol ∆s is a single entity and does not signify 
multiplication of two factors. It should be distinguished from the 
symbol ∆s, the distance traveled, which was used in the definition of 
speed (Eq. 2.1). The displacement (∆s) is a more complex quantity than 
simply the distance traveled (∆s). The displacement ∆s includes the 
distance traveled (∆s) and the direction of that movement in space. 

With the help of the coordinate grid in Fig. 2.16, you can find the co-
ordinates of Q and R relative to the origin O (Eq. 2.3). The coordinates 
of the change in relative position, which are called the components of 
the displacement from R to Q, are written ∆sx and ∆sy. They are equal 
to the differences of the coordinates of Q and of R relative to O (Eq. 
2.4).  

In a diagram, a position or displacement will be indicated by an arrow 
(with an open arrowhead, Figs. 2.16 and 2.17) from the reference or 
starting point at the tail to the actual or final point at the head. The 
length of the arrow represents the magnitude of the displacement, and 
the direction of the arrow represents the direction of the displacement. 
If several arrows have to be drawn, then their tails, magnitudes, and 
directions must be properly related. As you will discover in later chap-
ters, the arrow description of a magnitude and a direction in space will 
be used for force, velocity, and other physical quantities, as well as for 
displacements 

Placement of arrows. Consider, for instance, the surveyor (Fig. 2.6), 
whose measurements were represented by relative position arrows in 
Fig. 2.7. In this diagram the tails of all the arrows would be placed at 
the same point, which represents the surveyor's benchmark. If, how-
ever, you want to track a sailboat moving on a zigzag course

Figure 2.16  The dashed arrows repre-
sent the positions of points Q and R 
relative to the coordinate axes. The solid 
arrow represents the displacement ∆s 
from R to Q. Figure 2.17  Arrows represent the succes-

sive small displacements of a particle 
whose overall (or net) displacement is 
from R to Q. 

Equation 2.3 
 
Relative position of Q 

  




=
=

=
4
3

]4,3[
y

x

s
s

s  

Relative position of R 
 

  




=
−=

−=
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s  

 
Equation 2.4 
Change of relative position 
from R to Q (displacement ∆s) 
 

  

'
3 ( 2) 5

'
4 3 1

[ ', ']
[5, 1]

x x x

y y y

x x y y

s s s

s s s

s s s s

∆ = −
= − − =

∆ = −
= − =

= − −
=

∆s = s - s'
 

Note that the x- and y- compo-
nents of ∆s are independent of 
one another and are calcu-
lated separately. 
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(Fig. 2-18), then you must represent the displacement on each straight 
part by an arrow whose tail is placed at the head of the arrow represent-
ing the preceding displacement. Thus, you obtain a map of the boat's 
path, and you can find the overall displacement from the starting point 
to the finish point by interpreting the map. 

Addition of displacements. The process of combining the displace-
ments to find the overall displacement by placing the tail of one arrow 
at the head of the previous one is called addition of displacements, and 
the overall displacement is called the sum. This is analogous to the 

Figure 2.18  The sailboat proceeds from the starting point to the finishing point 
along a six-part zigzag course. The individual displacements ∆s1, ∆s2, ∆s3, ∆s4, ∆s5, 
and ∆s6 combine (add together) to give the sum, or overall displacement ∆s. (Scale: 
length of side of small square in graph below = 1/2 mile.)  
First, we find the various displacements by counting squares on the figure below: 
∆s1 = [+2.0, +3.0] ∆s3 = [+5.0, +3.0] ∆s5 = [+2.5, -1.5] 
∆s2 = [+1.0, -3.0]  ∆s4 = [-0.5, -2.0]  ∆s6 = [-0.5, +5.5] 
∆s = [∆sx , ∆sy] = [+9.5, +5.0] (counted directly from figure below) 
We can check the above result by adding the individual displacements to find the 
sum:  ∆s1 + ∆s2 + ∆s3 + ∆s4 + ∆s5 + ∆s6 = ∆s 
Now, to actually find the x- and y-components of ∆s, we must add the individual 
x- and y-components separately, so they do not get mixed up with one another! 
 x components : ∆sx = 2.0 + 1.0 + 5.0 - 0.5 + 2.5 - 0.5 = 9.5 (agrees with above) 
 y components: ∆sy = 3.0 - 3.0 + 3.0 - 2.0 - 1.5 + 5.5 = 5.0 (agrees with above) 
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addition of numbers, where $100 combined with $60 gives the sum of 
$160. The graphical process of adding displacements is illustrated in 
Fig. 2.18. You can also use normal arithmetic to do this if you know the 
rectangular components of each displacement. The rectangular compo-
nents may be read off Fig. 2.18 and are listed in the legend to that fig-
ure. It is clear that the x component of the overall displacement is the 
sum of the x components of the individual components, and the same is 
true of the y components. It is essential to keep the x- and y-
components separate. 

Subtraction of displacements. The course of the sailboat in Fig. 2.18 
gave a natural illustration of the sum of displacements. To find illustra-
tions of the difference of displacements, consider first two ways of in-
terpreting the difference of two numbers: what is left over after

Figure 2.19 The sailboat has accomplished displacement ∆s1 and still needs to 
make displacement ∆s2 to reach its destination. The displacement ∆s2 is the 
difference between ∆s and ∆s1. (Scale: 1 square = 1/2 mile.)  
∆s1 = [1, 5], ∆s2 = [5, 0], ∆s = [6, 5]. 
∆s2 = ∆s - ∆s1 = [6, 5] - [1, 5] = [6 - 1, 5 - 5] = [5, 0]. (Note that the x- and y-
components are subtracted separately so they do not get mixed together!) 
As you can see in the figure, ∆s2 indeed has an x-component of 5 and a y-
component of 0. 

Finding the sum (or dif-
ference) of displacements: 
the x- and y-components 
are independent and must 
be kept track of separately; 
thus x-components are only 
added to (or subtracted 
from) other x-components, 
and y-components are only 
added to (or subtracted 
from) other y-components. 
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part is removed and what is needed to obtain a larger quantity. The first 
way applies when you have $100 and spend $60; you are left with the 
difference, which is $40. The second way applies when you want $100 
and have $60; you still need the difference, which is $40. The second 
interpretation can be applied to displacements. If you are in the sail-
boat, are aiming for a destination at a displacement ∆s from the starting 
point, but have only made the progress described by the displacement 
∆s1, the displacement ∆s2 must still be traversed (Fig. 2.19). The dis-
placement ∆s2 is the difference between the goal ∆s and the partial 
achievement ∆s1, that is, ∆s2 = ∆s - ∆s1. The difference may be found 
either graphically or arithmetically from the rectangular displacement 
components by subtraction as shown in Fig. 2.19. 

Multiplication and division. Certain other arithmetic operations can 
be carried out with displacements by performing these operations on all 
the rectangular components of the displacements, just as you have cal-
culated sums and differences by applying the appropriate arithmetic 
operation to the rectangular components. By adding a displacement to 
itself repeatedly (Fig. 2.20a), you obtain a multiple of the displacement. 
You can also divide a displacement into equal parts, such that each part 
is a fraction of the original displacement (Fig. 2.20b). Finally, you can 
find the negative of a displacement, which is just a displacement of 
equal magnitude and in the opposite direction from the original dis-
placement (Fig. 2.20c). 

An important algebraic concept is the division of a displacement by a 
number (Eq. 2.5), which will be used in the definition of velocity and

,

[14,5] [3.5,1.25]
4

yx

Equation 2.5
ss

b b b

EXAMPLE
 = [14, 5] and b = 4

Then

b
  

∆ ∆
=  
 

= =

∆s

∆s

∆s

  

Figure 2.20 Arithmetic operations with displacements. 
(a) Multiple displacements. 
(b) Fractional displacement. 
(c) Negative displacement. 
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acceleration in Chapter 13. Specifically, a displacement divided by a 
number is just another, smaller displacement in the same direction; to 
calculate this, simply divide each rectangular component by the num-
ber, as illustrated in Eq. 2.5. 

Summary 
Position and motion of objects can only be observed and described 

relative to reference frames. Position or motion of an object may differ 
when described relative to different reference frames. A reference frame 
may be centered on you or on any other point in space that is stationary 
or in motion relative to you. Quantitative ways of describing relative 
position make use of polar coordinates (sr , sθ) and rectangular coordi-
nates [sx, sy]. A quantitative description of relative motion makes use of 
the average speed, which is defined as the distance traveled divided by 
the time interval required (Eq. 2.1). 

The change of an object's relative position is called the displacement. 
The displacement has a magnitude and a direction in space. It is repre-
sented in diagrams by an arrow and is described quantitatively by polar 
coordinates or rectangular components, [∆sx , ∆sy]. The processes of 
arithmetic (addition, subtraction, multiplication and division) can be 
carried out with displacements in rectangular coordinates by calculating 
the x- and y-components separately. 

List of new terms 
reference object  coordinate frame displacement 
reference frame  polar coordinates component 
reference point  rectangular coordinates average speed 
reference direction  coordinate axis instantaneous speed 
particle origin of coordinates 

List of Symbols 
s (bold) relative position in space 
[sx , sy] rectangular ∆s distance traversed 
  position coordinates  ∆t time interval 
[sr , sθ] polar position  v speed 
  coordinates  
∆s (bold) displacement  
[∆sx, ∆sy] displacement components 
 (or displacement rectangular coordinates) 

Problems 
1. Lie on your bed on your back. Use your head as reference point and 

the directions front, back, right, left, above, below (or combinations 
of these) to describe the position of objects relative to this reference 
point. Give the approximate direction and distance of several of the 
following: pillow, lamp, radio, door, your feet, and so on. 

Introductory Physics: A Model Approach by Robert Karplus is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.



Chapter 2 - Reference frames  51 

2. Describe the position of your bedroom by using the building as ref-
erence frame. (Do not give detailed instructions as to how a person 
could walk to your bedroom.) 

3. Describe the position of the children in Fig. 2.1 by using the picture 
edge as reference frame. 

4. Find an alternate way of locating the hawk for Clyde (Fig. 2.2). 

5. (a) Estimate the polar coordinates of the house and trees D and E in 
Fig. 2.6. 
(b) Mark the location of the house and trees D and E on the map in 
Fig. 2.7. 

6. Find the distance from R to Q in Fig. 2.10. 

7. Find an arithmetic relationship among the coordinates of Q relative 
to O, R relative to O, and Q relative to R in Fig. 2.10. 

8. A man on the earth travels 10 miles south, then 10 miles east, then 10 
miles north. After the 30-mile trip is finished, he is back at his start-
ing point. Identify his starting point. 

9. Give two examples from everyday experience where you intuitively 
identify motion relative to a reference frame that is moving relative 
to the earth. 

10. Explain how a motion-picture strip can be used to determine the 
speed of a moving object. Refer to average and instantaneous speeds. 
Apply your method to Fig. 2.12. You should estimate the approxi-
mate distances in the figure. 

11. Explain how a multi-flash photograph like Fig. 2.13 can be used to 
determine the speed of the moving object at various points along the 
path. Apply your method to an object in Fig. 2.13. You should esti-
mate the approximate distances in the figure. 

12. Measure the average speeds of two or three objects in everyday life. 
You may use any convenient units, but you should convert to stan-
dard units (meters per second). Explain for each example how you 
chose to define "average." 

Problems 13-16 ask you to compare or describe motion. You should 
describe the path(s) of the motion in words, name the reference 
frame(s) and make a drawing(s). You should also describe the speed of 
the motion. 
13. A record is being played on a phonograph. Compare the motion of 

the needle relative to the phonograph base with the needle's motion 
relative to the record on the turntable. 
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14. Describe the motion of the moon relative to a reference frame fixed 
on the sun. Use a one-particle model for the moon. 

15. Describe the motion of the earth relative to a reference frame fixed 
on the surface of the moon. Use a one-particle model for the earth. 

16. Describe the motion of the sun relative to a reference frame fixed 
on the moon. Use a one-particle model for the sun. 

17. A girl is pedaling a bicycle in a straight line. 
(a) Describe the motion of the tire valve relative to the axle of the 
wheel. 
(b) Describe the motion of the tire valve relative to the road. 
(c) Describe the motion of one pedal relative to the road. 
(d) Describe the motion of one pedal relative to the other pedal. 

18. Using the two different methods outlined below, find the displace-
ment from tree A to the windmill in Fig. 2.7. 
(a) Use ruler and protractor to solve the problem geometrically. State 
the result in polar coordinates. You answer should have both a dis-
tance (sr) and an angle (sθ), expressed as [sr , sθ]. 
(b) Impose a rectangular coordinate frame (graph paper) on Fig. 2.7 
and solve the problem arithmetically. You answer should have both 
an x-component (sx) and a y-component (sy), expressed as [sx , sy]. 

19. These questions deal with Fig. 2.18. 
(a) Find the combined displacement of the second and third legs of 
the sailboat's course. 
(b) Find the combined displacement of the fourth, fifth, and sixth 
legs of the sailboat's course. 
(c) Find the combined displacement of the first, third, and fifth legs 
of the course. 
(d) Find the displacement still required for the sailboat to reach its 
destination after the first leg of the course. 
(e) Find the displacement still required for the sailboat to reach its 
destination after the fourth leg of the course. 

20. Identify one or more explanations or discussions in this chapter that 
you find inadequate. Describe the general reasons for your dissatis-
faction (conclusions contradict your ideas, or steps in the reasoning 
have been omitted; words or phrases are meaningless; equations are 
hard to follow; etc.) and pinpoint your criticism as well as you can. 
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