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Waves on a water surface are such a familiar and expected occur-
rence that a completely still, glassy pool excites surprise and admiration 
(Fig. 6.1). You can also observe waves on flags being blown by a 
strong wind. In this chapter you will be concerned with how waves 
propagate, what properties are used to describe them, and how waves 
combine with one another when several pass through the same point in 
space at the same time. In the wave theory, which was formulated by 
Christian Huygens during the seventeenth century, the space and time 
distribution of waves is derived from two assumptions, the superposi-
tion principle and Huygens' Principle. The wave theory is very "eco-
nomical" in the sense that far-reaching consequences follow from only 
these two assumptions. 

Waves are important in physics because they have been used in the 
construction of very successful working models for radiation of all 
kinds. You can easily imagine that dropping a pebble into a pond and 
watching the ripples spread out to the bank suggests interaction-at-a-
distance between the pebble and the bank. The waves are the interme-
diary in this interaction, just as radiation was the intermediary in some 
of the experiments described in Sections 3.4 and 3.5. In Chapter 7, we 
will describe wave models for sound and light and how these models 
can explain the phenomena surveyed in Chapter 5. The success of these 
models confirms Huygens' insight into the value of wave theory. How-
ever, Huygen's contributions and wave theory were not fully appreci-
ated and exploited until the nineteenth century. 

Waves were originally introduced as oscillatory disturbances of a ma-
terial (called the medium) from its equilibrium state. Water waves and 
waves on a stretched string, the end of which is moved rapidly up and 
down, are examples of such disturbances. The waves are emitted by a 
source (the pebble thrown into the pond), they propagate through the 
medium, and they are absorbed by a receiver (the bank). Even though 
waves are visualized as disturbances in a medium, their use in certain 
theories nowadays has done away with the material medium. The 
waves in these applications are fluctuations of electric, magnetic, or 

Christian Huygens 
(1629-1695) was born at 
The Hague in Holland. 
His father Constantine, 
a man of wealth, posi-
tion, and learning, 
quickly recognized the 
boy's unusual capabili-
ties. Christian's father 
taught him both mathe-
matics and mechanics, 
and long before his thir-
tieth birthday, Huygens 
had published important 
papers on mathematics, 
built and improved tele-
scopes, discovered a 
satellite of Saturn, and 
invented the pendulum 
clock. In 1665, King 
Louis XIV of France 
invited Huygens to join 
the brilliant galaxy of 
intellects that the "Sun 
King" had clustered 
about him at Versailles. 
After 15 years in Paris, 
Huygens returned to 
spend his last years in 
Holland. These last 
years, however, proved 
to be as remarkable as 
his early years. In 1690, 
Huygens published the 
Treatise on Light, his 
historic statement of the 
wave theory of light. 

Figure 6.1 The re-
flected image gives 
information about 
the smoothness of 
the water surface. 
Why are the reflec-
tions of the sails 
dark and not white?
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gravitational fields, rather than oscillations of a medium. The use of 
such waves to represent radiation has unified the radiation model and 
the field model for interaction-at-a-distance (Section 3.5). Our discus-
sion here, however, will be of waves in a medium and not of waves in a 
field. 

6.1 The description of wave trains and pulses 
Oscillator model. We will analyze the motion of the medium through 

which a wave travels by making a working model in which the medium 
is composed of many interacting systems in a row. Each system is ca-
pable of moving back and forth like an oscillator, such as the inertial 
balance shown below and described in Section 3.4. You may think of 
the oscillators in a solid material as being the particles in an MIP model 
for the material. 

Amplitude and frequency. Each oscillator making up the medium has 
an equilibrium position, which it occupies in the absence of a wave. 
When an oscillator is set into motion, it swings back and forth about the 
equilibrium position. The motion is described by an amplitude and a 
frequency (Fig. 6.2). The amplitude is the maximum distance of the 
oscillator from its equilibrium position. The frequency is the number of 
complete oscillations carried out by the oscillator in 1 second. 

Interaction among oscillators. When waves propagate through the 
medium, oscillators are displaced from the equilibrium positions and 
are set in motion. The wave propagates because the oscillators interact 
with one another, so that the displacement of one influences the motion 
of the neighboring ones, and so on. Each oscillator moves with a fre-
quency and an amplitude. It is therefore customary in this model to 
identify the frequency and amplitude of the oscillators with the fre-
quency and amplitude of the wave. In addition, as you will see, there 
are properties of the wave that are not possessed by a single oscillator 
but that are associated with the whole pattern of displacements of the 
oscillators. 

Conditions for wave motion. The oscillator model described above 
has two general properties that enable waves to propagate. One is that 
the individual oscillator systems interact with one another, so that a 
displacement of one influences the motion of its neighbors. The second 
is that each individual oscillator has inertia. That is, once it has been set 
in motion it continues to move until interaction with a neighbor slows it 
down and reverses its motion. These two conditions, interaction and 
inertia, are necessary for wave motion. 
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Wave trains. Look more closely now at the pattern of the oscillators 
in the medium shown in Fig. 6.3. As a wave travels through the me-
dium, the various oscillators have different displacements at any one 
instant of time. The wave is represented graphically by drawing a 
curved line through the displaced positions of all the oscillators (shown 
above in Fig. 6.3). This curved line, of course, changes as time goes on 
because the oscillators move. Note, however, that the individual oscilla-
tors in the model move only up and down. 

Wavelength and wave number. You can see from Fig. 6.3 that the 
wave repeats itself in the medium. This pattern of oscillators is called a 
wave train, because it consists of a long train of waves in succession. A 
complete repetition of the pattern occupies a certain distance, after 
which the pattern repeats. This distance is called the wavelength; it is 
measured in units of length and is denoted by the Greek letter lambda, 
λ. Sometimes it is more convenient to refer to the number of waves in 
one unit of length; this quantity is called the wave number and it is de-
noted by the letter k. Wavelength and wave number are reciprocals of 
one another (Eq. 6.1). 

Period and frequency. We have just described the appearance of the 
medium at a particular instant of time. What happens to one oscillator 
as time passes? It moves back and forth through the equilibrium posi-
tion as described by a graph of displacement vs. time (Fig. 6.4) that is 
very similar to Fig. 6.3. The motion is repeated; each complete cycle 
requires a time interval called the period of the motion, denoted by a 
script "tee," T. The number of repetitions per second is the

Figure 6.3 Row of oscillators in a medium, showing equilibrium positions and 
displaced positions in a wave. The wavelength is the distance after which the wave 
pattern repeats itself. 
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Figure 6.4  Graph of the motion (displacement) of one oscillator over time. The period
(T) is the time internal after which the motion repeats itself. 
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frequency (symbol f). The period and frequency are reciprocals of one 
another (Eq. 6.2), just as are the wavelength and wave number. The 
period and frequency describe the time variation of the oscillator dis-
placements, while the wavelength and wave number describe the spa-
tial variation. 

Wave speed. One of the most striking properties of waves is that they 
give the appearance of motion along the medium. If you look at the 
pattern of displacements at two successive instants of time (Fig. 6.5), 
you see that the wave pattern appears to have moved to the right (along 
the medium), although the individual oscillators have only moved up 
and down. Since the pattern actually moves, you can measure its speed 
of propagation through the medium. The wave speed is usually repre-
sented by the symbol v (Section 2.2). 

You can conduct a thought experiment with the oscillator model for 
the medium to find a relationship among period, wavelength, and wave 
speed. Imagine the oscillator at a wave crest carrying out a full cycle of 
its motion (Fig. 6.6). While this goes on, all the other oscillators also 
carry out a full cycle, and the wave pattern returns to its original shape. 
The wave crest that was identified with oscillator A in Fig. 6.6, how-
ever, is now identified with oscillator B. Hence the wave pattern has 
been displaced to the right by 1 wavelength. The wave speed is the ra-
tio of the displacement divided by the time interval (Eq. 2.2), in this 
instance the ratio of the wavelength divided by the period (λ/T, Eq. 
6.3a). By using Eq. 6.2, f = 1/T, you can obtain the most useful form of 
the relationship: v = λf, or wave speed is equal to wavelength times 
frequency (Eq. 6.3b). 

Positive and negative displacement. Waves are patterns of distur-
bances of oscillators from their equilibrium positions. The displacement 
is sometimes positive and sometimes negative. In Fig. 6.3, the open 
circles and the horizontal line drawn along the middle of the wave 
show the equilibrium state of the medium. Displacement upward may 
be considered positive, displacement downward negative. In water 
waves, for example, the crests are somewhat above the average or equi-
librium level of the water and the troughs are somewhat below the av-
erage or equilibrium level of the water. In fact, the water that forms the 
crests has been displaced from the positions where troughs appear. 

By definition, the pattern in a wave train repeats itself after a distance 
of 1 wavelength. It therefore also repeats after 2, 3, ... wavelengths. 
Consequently, the oscillator displacements at pairs of points separated 
by a whole number of wavelengths are equal. If you only look at a dis-
tance of 1/2 wavelength from an oscillator, however, you find an oscil-
lator with a displacement equal in magnitude but opposite in direction 
(Fig. 6.7). 

Wave pulses. In the wave trains we have been discussing, a long se-
ries of waves follow one another, and each one looks just like the pre-
ceding one. On the other hand, a wave pulse is also a disturbance in 
the medium but it is restricted to only a part of the medium at any one 
time (Fig. 6.8). It is not possible to define frequency or wavelength 
for a pulse since it does not repeat itself. The concept of wave speed, 

period (time for one 
complete repetition, 
in seconds)           =
frequency (number of  
complete repetitions 
in one second, per 
second)                    = f
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however, is applicable to pulses since the pulse takes a certain amount 
of time to travel from one place to another. In Section 6.2 we will de-
scribe how wave trains and wave pulses can be related to one another. 

 
Examples of wave phenomena. The oscillator model for a medium 

can be applied to systems in which small deviations from a uniform 
equilibrium arrangement can occur. One such system is a normally mo-
tionless water surface that has been disturbed so that water waves have 
been produced. Another example is air at atmospheric pressure in 
which deviations from equilibrium occur in the form of pressure varia-
tions: alternating higher or lower pressure. Such pressure variations are 
called sound waves. A third example is an elastic solid such as Jell-O, 
which can jiggle all over when tapped with a fork. In the oscillator 
model, movement results from oscillating displacements within the 
Jell-O after the fork displaced the oscillators at the surface. 

Oscillator model for sound waves. Since sound in air is of special in-
terest, we will describe an oscillator model for air in more detail. Visu-
alize air as being made up of little cubes of gas (perhaps each one in an 
imaginary plastic bag). When acted upon by a sound source, the first 
cube is squeezed a little and the air inside attains a higher pressure (Fig. 
6.9). The first cube then interacts with the next cube by pushing against 
it. After a while the second cube becomes compressed and the first one 
has expanded back to and beyond its original volume. The second cube 
then pushes on the third, and so on. In this way the sound propagates 
through the air. 

The initial pressure increase above the equilibrium pressure may be

Figure 6.9  A gas bag 
model for air is used to 
represent the propagation 
of a sound wave. An indi-
vidual bag of gas is alter-
nately compressed and 
expanded. Its interaction 
with adjacent bags of gas 
leads to propagation of the 
compression and expansion 
waves. 
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created by a vibrating piano string or a vibrating drumhead. In addition 
to regions of increased pressure, the sound wave also has regions of 
deficient pressure where the air has expanded relative to its equilibrium 
state. 

Thus the sound wave consists of alternating high-pressure (above 
equilibrium) and low-pressure (below equilibrium) regions. A pressure 
profile (pressure versus distance) for a pure tone has the typical wave 
pattern shown in Fig. 6.10. 

6.2 Superposition and interference of waves 
The superposition principle. Can you visualize what happens when 

two waves overlap? In the oscillator model, it is easy to describe the 
medium at a place where there are two or more waves at the same time. 
Each oscillator is displaced from its equilibrium position by an amount 
equal to the sum of the displacements associated with the waves sepa-
rately (Fig. 6.11). In other words, you visualize the oscillator displace-
ments associated with each of the wave patterns and add them together. 
This procedure takes for granted that the waves do not interact with one 
another, but that each propagates as though the others were not present. 

The property of non-interaction we have just described is called the 
superposition principle. It makes the combination of waves simple to 
carry out in thought experiments, and it has been exceedingly valuable 
for this reason. Fortunately, a wave model that incorporates the super-
position principle describes quite accurately many wave phenomena in 
nature. 

Figure 6.10  Pressure profile in a sound wave. The graph shows deviations 
from the equilibrium pressure. 
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Figure 6.11  Superposition of 
two waves leads to interfer-
ence. One wave is repre-
sented by black dashes, the 
other by dots. The combina-
tion wave is the sum of both 
waves and is represented by 
the solid line. 
 
(a) Constructive interference 
occurs when dotted and 
dashed waves reinforce each 
other. 
 
(b) Destructive interference 
occurs when dotted and 
dashed waves cancel each 
other. 

Interference of waves. Consider now what may happen to the oscilla-
tor motion as a result of the superposition of two waves. The two waves 
may combine in various ways. Perhaps each of two wave patterns has 
an upward displacement of an oscillator at a certain time and at a cer-
tain place. In such a case, the upward displacement in the presence of 
the combined wave will be twice as big as that from one wave alone 
(Fig. 6.11(a)). If there are simultaneous downward displacements in the 
two waves separately, the combined displacement will be twice as far 
down. Suppose you consider a point in space where one wave has an 
upward displacement and the other wave has an equal downward dis-
placement at the same time. Now, the upward (positive) displacement 
and the downward (negative) displacement add to give zero combined 
displacement (zero amplitude of oscillation). In fact, it is possible for  

Figure 6.12 Superposition of two waves leading to partially destructive interfer-
ence. The displacements of the dashed and dotted waves are added together at each 
point to yield the displacement of the combination wave (represented by the solid 
line). Note that displacement below the line is negative. 
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two waves to combine in such a way that they completely cancel one 
another, as in Fig. 6.11b. 

This characteristic of waves makes their behavior different from what 
we expect of material objects, particularly when we think of them as 
single particles (Section 2.1) or as made up of particles. If one particle 
and another particle are combined, you have two particles, and you 
cannot end up with zero particles. Two or more waves, however, may 
combine to form a wave with larger amplitude, a wave with zero ampli-
tude, or a wave with an intermediate amplitude (Fig. 6.12). 

This result of the superposition of waves is a phenomenon called in-
terference. If waves combine to give a larger wave than either one 
alone, you have constructive interference. If waves tend to cancel each 
other, you have destructive interference. There is a continuum of possi-
bilities between the extremes of complete constructive interference 
shown in Fig. 6.11(a) and complete destructive interference shown in 
Fig. 6.11(b). With particles, the concept of destructive interference is 
meaningless in that the presence of one particle can never "cancel" the 
presence of another.  

Standing waves. When two equal-amplitude wave trains of the same 
frequency and wavelength travel through a medium in opposite direc-
tions, their interference creates an oscillating pattern that does not move 
through the medium (Fig. 6.13). Such an oscillating pattern is called a 
standing wave. The points in a standing wave pattern where there are 
no oscillations at all are called nodes. At a node, there is always com-
plete destructive interference of the two wave trains; the displacements 
associated with the two waves at the nodes are always equal and oppo-
site. Because the waves move in opposite directions at the same speed, 
each node remains at one point in space and does not move; this is the 
reason behind the choice of name: a standing wave does not move. 

You can see in Fig. 6.13 that the distance between two nodes must be 
exactly ½ wavelength. This holds true not only for the illustration but 
also for all standing wave patterns. The reasoning is as follows. At any 
node, the two wave displacements must always be equal and opposite 
to produce complete destructive interference. At a distance of ½ wave-
length, the displacement associated with each wave has exactly re-
versed (as illustrated in Fig. 6.7). Thus, the two displacements must 
again be equal and opposite and again produce a node. 

An easy way to set up standing waves is to place a reflecting barrier 
in the path of a wave. The reflected wave interferes with the incident 
wave to produce standing waves. The nodes are easy to find because 
the oscillators remain stationary at a node. This offers a convenient way 
to determine the wavelength: measure the distance between nodes and 
multiply by 2. 

Tuned systems. It is very fruitful to pursue the standing wave idea 
one step further. Suppose an elastic rope is tied to a fixed support at 
each end and the middle is set into motion by being pulled to the side 
and released (see drawing to left). How will the rope oscillate? To solve 
this problem, think of the pattern as being made up of wave trains in 

 

 

The "one-particle model" for a 
real object is a "very small 
object that is located at the 
center... of the region occupied 
by the real object." (Section 
2.1) This is a way to think 
about an object so as to focus 
on the object's position, motion, 
and inertia without considering 
its shape and orientation. 
Complex objects can be 
thought of as two or more par-
ticles that interact in defined 
ways, or with the many-
interacting-particles (MIP) 
model. In such models, each 
particle is thought of as a sin-
gle, tiny bit of matter. The mat-
ter itself is thought of as inde-
structible, or "conserved." Such 
particles cannot "cancel" one 
another to cause destructive 
interference. 

A wave, on the other hand, is 
quite different. A wave, as ex-
plained in this chapter, is 
thought of as a disturbance or 
oscillation that passes through 
matter. The displacement of the 
particles can be positive or 
negative and, as with (+1) + (– 
1) = 0, two waves can cancel 
one another.  

In the 20th century, physicists 
found that matter in the micro-
domain behaves in ways that 
conform with neither the parti-
cle nor the wave model. This 
led to the "wave-particle dual-
ity" and quantum mechanics. 
(Chapter 8). 
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combinations, some moving to the right, others to the left. Because the 
ends are fixed, the wave pattern must be such that the ends of the rope 
are its nodes. The length of the rope is the distance between the nodes, 
which must be an integral multiple of ½ wavelength (Eq. 6.4). It fol-
lows that the wavelengths of the waves that can exist on this rope are 
related to the length of the rope by Eq. 6.5 to satisfy the conditions of 
nodes at the ends. 

A system such as the rope with fixed ends is called a tuned system, 
because it can support only waves of certain wavelengths (Eq. 6.5) and 
the frequencies related to them by Eq. 6.6 (derived from Eq. 6.3b). The 
wave speed is a property of the medium from which the tuned system is 
constructed. 

Figure 6.13  The formation of standing waves by the superposition of two 
wave trains propagating in opposite directions (dotted wave towards right 
and dashed wave toward left). The combination wave is the solid line. Note 
the stationary position of the nodes, marked by the large dots. 
(a) Constructive interference of the two wave trains. 
(b) Partially destructive interference after 1/8th of a period.  
(c) Destructive interference after 2/8ths (1/4th) of a period. 
Can you draw the pattern after 3/8ths of a period? After 4/8ths (1/2) of a 
period?  
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Equation 6.6 (finding 
frequency for a given 
speed and wavelength)
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Musical instruments. Musical instruments employ one or more tuned 
systems whose frequencies are in a suitable relation to one another. For 
stringed instruments, such as the violin and guitar, the tuned system is a 
wire or elastic cord; for wind instruments, it is an air column in a pipe 
closed at one end; for drums, it is an elastic membrane whose edge is 
fixed; and so on. 

The tone of the instrument is determined by the oscillation frequency 
of the tuned system. It is possible to change the frequency either 
through changing the length of the tuned system (and therefore chang-
ing the wavelength of the allowed standing waves) or through changing 
the wave velocity by modifying the medium in the tuned system. 

Sound waves of a single frequency can be produced in closed pipes of 
a certain length. Longer pipes produce lower tones. A pressure wave 
starts at one end of the pipe and travels down the pipe, confined by the 
walls. When the wave reaches the other end of the pipe, it is reflected 
back and interferes with waves coming down the pipe. The interference 
forms a standing wave. This standing wave is of the characteristic 
wavelength determined by the length of the pipe and has the frequency 
that we hear. 

Beats. Standing waves are created by the interference of waves with 
the same frequency. What will be the combined effect of two waves of 
differing frequencies? To answer this question, apply the superposition 
principle in a thought experiment in which two such waves are com-
bined. Suppose the two waves are in constructive interference at one 
instant of time. Since one wave has shorter cycles than the other before 
repeating, they will soon get out of step. After a while, the two waves 
will be in destructive interference, and a little later in constructive inter-
ference again. So the net effect is an alternation from constructive inter-
ference (loud) to destructive interference (soft) and back again. These 
alternations in volume are called beats. 

It is easily possible to calculate the time interval between two beats 
from the difference in frequency of the two interfering wave trains. 
During this time interval the two waves must go from constructive in-
terference to destructive interference and back to constructive interfer-
ence. Therefore, the higher-frequency wave must vibrate exactly once 
more than the lower frequency wave. The additional oscillation restores 
the constructive interference of the two waves, since waves repeat ex-
actly after a whole oscillation. Hence the wave amplitude after the in-
terval is equal to its value before, meaning that the next beat is ready to 
begin. 

The number of oscillations made by either of the two waves is equal 
to its frequency (oscillations per second) times the time interval (N1 = 
f1∆t and N2 = f2∆t, Eq. 6.7). The two numbers, according to the condi-
tion, must differ by one (N1 - N2 = (f1 - f2)∆t, Eq. 6.8). The conclusion 
is that the frequency difference times the time interval is equal to one 
(∆f ∆t = 1, Eq. 6.9). The frequency of the individual waves determines 
the overall pitch of the sound, not the beat frequency; in fact, the beat 
frequency is f1 - f2.  

Wave packets. Standing waves and beats are wave phenomena that 
are observable when two wave trains are combined. You may, of
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course, use the superposition principle and the rules for constructive 
and destructive interference to combine as many different wave pat-
terns as you wish. In the early nineteenth century, it was discovered by 
Joseph Fourier (1768-1830) that any wave pattern could be formed by a 
superposition of one or more wave trains, as illustrated below. All wave 
phenomena can thereby be related to the frequencies, amplitudes, 
wavelengths, and velocities of the component wave trains in a wave 
pattern. 

To illustrate Fourier's discovery, we will construct a wave pulse close 
to the one shown in Fig. 6.8a by combining the four wave trains drawn 
in Fig. 6.14. You are invited to read off the wave amplitudes from the 
graphs, to add the wave amplitudes of the four waves, and to verify that 
the combined wave drawn in Fig. 6.14 really is obtained by superposi-
tion of the four wave trains. By combining more and more wave trains 
of other wavelengths and successively smaller and smaller amplitudes, 
you can achieve further constructive and destructive interference at 
various locations in the pulse. In this way you could obtain a closer and 
closer approximation to the wave pulse shown in Fig. 6.8a and Fig. 
6.14 (see Fig. 6.15). 

The representation of wave pulses by a superposition of wave trains 
has led to the introduction of the suggestive phrase wave packet (in-
stead of wave pulse), which we will also adopt. The superposition pro-
cedure can be quite tedious to work out in detail if many wave trains 
must be combined to achieve success. The essence of the procedure, 
however, is to select wave trains that interfere destructively in one wing 
of the wave packet, constructively at the center, and destructively again 
in the other wing. This can be achieved if one wave train has one more

Figure 6.14 (left)  The superposi-
tion of four wave trains to pro-
duce a wave pulse. 

Figure 6.15 (below)  The wave 
packet in Fig. 6.14 and the pulse 
in Fig. 6.8a have been drawn to 
the same scale for easier com-
parison. 
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full wave over the length of the packet than does the other one. Look, 
for example, at the wave packet with about four ripples shown in Fig. 
6.8c, and reproduced here (Fig. 6.16a). We can combine two wave 
trains (one with four full waves over the length of the packet and one 
with three) to find a first approximation to the desired wave packet 
(Fig. 6.l6b). 

Uncertainty principle. We will now formulate a general principle 
governing the superposition of wave trains to form wave packets. It is 
called the uncertainty principle, and it has played a very important role 
in the application of the wave model to atomic phenomena, which we 
will describe in Chapter 8. 

Physical significance. The content of the uncertainty principle is that 
a wave packet that extends over a large distance in space (large ∆s) is 
obtainable by superposition of wave trains covering a narrow range in 
wave numbers, but that a wave packet that extends over only a short 
distance in space (small ∆s) must be represented by the superposition
  

Figure 6.16  The superposition of wave trains to produce a wave 
packet.  
(a) The wave packet pictured in Fig. 68c, enlarged.  
(b) A very similar wave packet constructed by the superposition of two 
wave trains. 
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of wave trains covering a wide range in wave number. It is consequently 
impossible to construct a wave packet localized in space (small s) out of 
wave trains covering a narrow range in wave number. This idea is known as 
the "uncertainty principle" because it means that there is an inherent 
uncertainty in our ability to measure the exact position of a wave packet; s 
represents the "length" of the wave packet and thus the range of uncertainty 
in our measurement of the packet's position. The size of s is closely related 
to the range of wave numbers included in the packet. We cannot specify the 
range of wave numbers ( k) precisely, but we can relate it to the size ( s) of 
the wave packet. We will now derive a mathematical model that expresses 
this relationship. 

Mathematical model. The calculation proceeds in the same way as the 
calculation for the time interval between beats in Eqs. 6.7, 6.8, and 6.9. 
First, we select two wave trains with different wave numbers k1 and k2, one 
a little larger and one a little smaller than the average wave number of all the 
waves needed. Each wave train has a certain number of waves (N1= k1 s 
and N2= k2 s) within the length ( s) of the wave packet (Eq. 6.10). By how 
much do these two numbers have to differ? They have to differ sufficiently 
so that the two wave trains are in destructive interference in the regions to 
the left and to the right of the wave packet's center, where they are in 
constructive interference. The distance between the two regions is approx-
imately the spatial length s of the wave packet. Now, to achieve the desired 
destructive interference in both regions, the wave train with the shorter 
wavelength has to contain at least one more whole wave than the other in 
the distance s, that is: 1 + N2 = N1 , or  1 = N1 - N2 . This condition is 
applied in Eq. 6.11 to yield an important result: the range of wave numbers 
( k) times the width of the wave packet ( s) is equal to one (Eq. 6.12b). 

Comparison of beats and wave packets. It is clear that Eqs. 6.9 and 6.12b 
are closely similar. You may consider both of them as statements of an 
uncertainty principle for wave packets if you are willing to think of one beat 
pulsation as a wave packet. Equation 6.12 refers to the size of the wave 
packet in space. Equation 6.9 refers to the duration of the wave packet in 
time. The wave trains included in a wave packet have a certain average 
wave number or frequency, and extend above and below these average 
values by an amount equal to about one half of the wave number difference 

k or frequency difference f. The wave packet includes wave trains of 
substantial amplitude within this range of wave number or frequency, and 
wave trains of progressively smaller and smaller amplitude outside this 
range. The exact amplitude distribution of the included wave trains is 
determined by the shape of the wave packet and can be calculated by more 
complicated mathematical procedures developed by Fourier and later 
workers. We apply the uncertainty principle to wave packets below in 
Examples 6.1 and 6.2 
   
EXAMPLE 6.1. A telegraph buzzer operates at a pitch of 400 vibrations per 
second. A sound wave packet is formed by depressing the key for 0.1 
second. What is the frequency range in the wave packet? 
Solution: 

f t = 1, t = 0.1 sec., hence f = (1/ t) = (1/0.1 sec) = 10/sec. 
The frequency range is about 395 per second to 405 per second. 
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6.3 Huygens' Principle 
Ripple tank. Let us now return to study the propagation of waves by 

experimenting with water waves. A ripple tank is a useful device for 
observing water waves. It is a shallow tank with a glass bottom through 
which a strong light shines onto a screen (Fig. 6.17). Dipping a wire or 
paddle into the water, creates waves on the water surface; the crests of 
the waves create bright areas on the screen and troughs create shadows. 
The patterns of disturbance of the water surface may be observed (Fig. 
6.18). A wide paddle generates straight waves (Fig. 6.18a), while the 
point of a wire generates expanding circular waves (Fig. 6.18b). 

EXAMPLE 6.2. The wave packet pictured here is 0.08 meter long 
and contains approximately 16 ripples. What is the wave number 
range in this wave packet? 

Figure 6.17 (left)  Diagram of a ripple tank used for the production 
and observation of water waves. The wave crests and troughs 
create bright areas and shadows on the screen. 

Figure 6.18 (above)  Water waves in a ripple tank. (a) Waves gener-
ated by a wide paddle. (b) Waves generated by the point of a wire. 

16Average wave number k = 200 /
0 .008

1 11, 0.08 , 12 /
0.08

The wave number range is 194/m to 206 /m

m

k s s m k m
s m

Solution : 
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The point of a wire may be considered as a point source of waves. The 
reflection of a circular wave pulse created by a pencil point touched to 
the water surface is shown in Fig. 6.19. 

Wave patterns. To describe the pattern, we identify the wave front, 
which is the line made by each wave crest or trough, and the propaga-
tion direction in which the wave is traveling. The wave always travels 
in the direction at right angles to the wave front. Therefore, the wave 
travels in different directions at different parts of a curved wave front 
such as the one shown in Fig. 6.19. 

You can make an interesting discovery if you use a barrier to block 
off all but one small section of the water. The waves passing through 
the hole from one side of the barrier to the other spread out in ever in-
creasing circles (Fig. 6.20). This shows a very important result: the 
small section of the wave front acts as if it were itself a point source of 
waves. 

Huygens' wavelets. In the oscillator model, the oscillator in the small 
section moves in rhythm with the waves impinging from the source side 
of the barrier; it also interacts with the oscillators on the other side and

Figure 6.19  The bright lines of the wave crests indicate 
the wave fronts. The arrows at right angles to the wave 
fronts indicate the direction of propagation. The waves 
were originally produced by the tip of the pointer at the 
center of the photo. The wave fronts form circles cen-
tered on the point where they were created until they 
reflect from the barrier at the bottom of the photo. 
Where does the wave appear to be diverging from after 
it is reflected? Can you relate this to what you see in a 
plane (flat) mirror, as in Fig. 5.17? 
 

 

Figure 6.20  Straight waves from the left im-
pinge on a barrier with a hole. Note the curved, 
circular shape of the wave front to the right of 
the barrier 
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sets them in motion as though it were a point source. In fact, you can 
think of every point of a wave front as the source of wavelets (numer-
ous mini-waves generated by another wave) that radiate out in circles. 
That is, each oscillator interacts equally with the other oscillators in all 
directions from it. This principle is called Huygens' Principle. The 
wavelets have the same frequency of oscillation as their source points 
in the old wave front. When a wave front encounters a barrier, then 
most parts of the wave front are prevented from acting as wave sources. 
What remains is the circular wavelet originating from that part of the 
wave front that passes through the hole in the barrier. 

Two-hole interference. When the barrier has two holes, the waves not 
only pass through both holes and spread out, but there also is interfe-
rence between the waves coming from these two "sources." The ob-
servable result is very similar to the interference produced by waves 
from two adjacent point sources (Fig. 6.21). Note the lines of "nodes" 
fanning out at various angles from the sources, forming what is known 
as a "two-hole (or double-slit) interference pattern." This pattern de-
monstrates the existence of interference and can be observed in all 
waves (including light and sound), not just those in a ripple tank. 

Construction of wave fronts. The position of the wave front at suc-
cessive times may be found by seeking the region of constructive inter-
ference of the wavelets emanating from all the source points in a wave 
front. When there is no barrier, the complete circular wavelets originat-
ing from each point in the wave front are not seen because of destruc-
tive interference among them. 

Schematic diagrams for the procedure of locating the constructive in-
terference are drawn in Fig. 6.22. These diagrams show a wave crest at 
three successive instants. Huygens' Principle is applied to source points 
a in the initial wave crest AB to obtain the circles b, c, d. The destruc-
tive and constructive interference of all these wavelets results in a new 
wave crest at the position of the common tangent line CD of all the cir-
cles. After a second equal time interval, all the circles

 

Figure 6.21  Two point 
sources produce an interfe-
rence pattern. Note the lines 
of "nodes" fanning out from 
the sources. 
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are twice as large, but again the interference effects result in a wave 
crest EF at the position of the common tangent line of all the larger cir-
cles. In this way the straight wave crest advances. 
6.4 Diffraction of waves 

It is clear from Fig. 6.20 that waves do not necessarily travel in 
straight lines. Even though the incident wave is headed to the right, the 
wave transmitted through the hole has parts that travel radially outward

 

Figure 6.22  The wave 
front AB (thick white line) 
advances to CD and then 
EF, which are the common 
tangent lines of all the cir-
cular wavelets (thin black 
lines) from Huygens' 
sources (black dots) in the 
wave front at AB. 

 

Figure 6.23  Huygens' Principle is 
used to find the waves transmitted 
by a diffraction grating. Note the 
wavelets (thin, curved black lines) 
centered on the slits. The white lines 
indicate the undiffracted wave crests 
(along common tangent line AB) 
and the diffracted wave crests 
(common tangent lines CD and EF). 
The black arrows show the direc-
tions of propagation of the observa-
ble waves. 
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from the hole. In other words, the wave was deflected (or bent) by the 
barrier. This process of deflection of waves passing beside barriers is 
called diffraction. Diffraction makes it possible for waves to bend 
around a barrier. 

Diffraction grating. Let us now apply Huygens' Principle to a device 
called a diffraction grating. A diffraction grating has many evenly 
spaced slits through which waves can travel. Between the slits, waves 
are absorbed or reflected. A wave coming through the slits radiates out 
from each slit in circular wavelets according to Huygens' Principle 
(Fig. 6.23). You do not observe simple circular waves, however, be-
cause the many waves interfere, sometimes constructively and some-
times destructively. A convenient analogue model for diffraction that can 
be constructed from four strips of paper is described in Fig. 6.24.

Figure 6.24 Paper strip analogue model for diffraction of waves by a grating. Four paper 
strips are marked at equal intervals to represent wave troughs and crests. The four strips are 
then pinned in a row to represent four wave trains passing through equidistant slits in a grat-
ing. The strips may be rotated, but are always kept parallel so that the strip direction 
represents the propagation direction. Interference is determined by the superposition of crests 
and troughs on the strips. 
(a) Constructive interference in the un-diffracted direction is indicated by the alignment of 
crests with crests, troughs with troughs.  
(b) Destructive interference is indicated by the alignment of the crests of one "wave" and the 
troughs of the adjacent "wave."  
(c) Constructive interference in the diffracted direction is indicated by the alignment of crests 
with crests, troughs with troughs. 
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With a large diffraction grating of many slits (perhaps 10,000 slits or 
more), constructive interference of the waves from all the slits occurs 
only when the adjacent strips are exactly one, two, or three waves out 
of step. For all other directions, you can find pairs of close or distant 
slits that give complete destructive interference and thereby cancel one 
another's wavelets. Waves are therefore diffracted by the grating only 

  

(b) [En-
large-ment 
of (a)] 

(c) 
[Enlarge-
ment of (b)] 

(a) 
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into certain special directions. The diffraction angle can be calculated 
from the condition for constructive interference (Fig. 6.25). 

The diffraction grating formula states that the sine of the angle of dif-
fraction is equal to the ratio of the wavelength to the distance between 
slits. (See Eq. 6.13 and Example 6.3.) The most important practical ap-
plication of the diffraction grating has been to the study of light, which 
will be described in the next chapter. 

Diffraction by single slits and small obstacles. Huygens' Principle 
can also be applied to diffraction by a single slit opening (Fig. 6.20) 
and to diffraction by a short barrier. The result of the theory suggests that 
the ratio of the wavelength to a geometrical dimension of the diffracting 
barrier is of decisive importance for diffraction. In fact, if this ratio is 
very small (short wavelength, large slit, or large obstacle), the angles of 
diffraction are very small, so that diffraction is hardly noticeable. If the 
ratio is large (long wavelength, small slit, or small obstacle),

 

distance between slits
     (meters)               = d
diffraction angle      = 

     sine  = 
d

Equation 6.13 
(diffraction grating)
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then diffraction covers all angles, but the amplitudes of the diffracted 
waves are very small because the slit or obstacles are small. For inter-
mediate values of the ratio (wavelength comparable to the slit or ob-
stacle in size), diffraction is an important and easily noticeable pheno-
menon. Two photographs of waves in a ripple tank (Fig. 6.26) show 
long and short wavelength waves passing through an opening and being 
diffracted when they pass through an opening. The greater diffraction 
of the longer wavelength waves is obvious. 

6.5 Reflection of waves 
The ripple tank photograph to the left (from Fig. 6.19) shows reflec-

tion of an expanding circular wave packet. We picked one point on the 
barrier and drew arrows showing the approximate direction of propaga-
tion before and after reflection from that point. The angles of incidence 

Figure 6.26  Diffraction of waves by an opening. In both photos, the waves are 
moving from left to right. In the left photo, the wavelength is relatively short 
(1/3 the width of the opening), so there is little diffraction, and only very weak 
waves are diffracted away from the original direction of propagation. In the 
right photo, the wavelength is longer (2/3 the width of the opening), and the 
waves experience substantial diffraction, spreading out in all directions. After 
passing through the opening, the wave fronts are essentially semicircles, show-
ing that the waves are now moving in various directions away from the open-
ing. This is a practical demonstration of Huygen's Principle: the waves passing 
through the opening act as point sources of new waves, which then travel in all 
directions away from the sources. 
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and reflection (as defined in Fig. 5.11) are shown. You can measure the 
angles to test whether they are equal; we measured one to be 43.5° and 
the other to be 45°; this is satisfactory agreement given the accuracy of 
our measurements. 

We can also use Huygens' Principle to investigate the relation of these 
angles in a more general way. According to this principle, each point in 
a wave front acts like a source of wavelets propagating outward. The 
wavelets have the same frequency and wavelength as the original 
waves. The common tangent line of the wavelets is the wave front they 
produce by constructive interference. 

The reflection process is illustrated in Fig. 6.27. A straight wave is in-
cident on the reflecting barrier obliquely from the left. Between the

 

 

 

Figure 6.27  Reflection of waves by a barrier. The incident wave crests (white lines) are advancing 
toward the lower right. Only one reflected wave, moving toward the upper right, is shown. To avoid 
clutter in the diagram, we have not drawn the other reflected waves.  
(a) Three wave crests are striking the barrier, which has reflected a section of the first crest. Point A 

on the first crest acts as a source of Huygens' wavelets. 
(b) The wave crests advance by a distance of one wavelength ( ), and the wavelet from Point A has 

expanded into a semicircle of radius . Point B becomes a source of wavelets. 
(c) The wave crests advance by another wavelength; the wavelet from Point A now has a radius of 

2 ; the wavelet from B has a radius . and the Point C becomes a source of wavelets. 
(d) The wavelet from A has radius 3 ; the wavelet from B has radius 2 , the wavelet from C has ra-

dius , and Point D becomes a source of wavelets.  
The wavelets constructively interfere all along the common tangent line DD', which defines the loca-

tion and direction of the reflected wave fronts. 
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four successive instants shown in Fig. 6.27, the wave advances between 
each drawing by 1 wavelength. The Huygens wavelets formed by the 
first wave crest passing through points A, B, C, and intermediate points 
on the barrier have a common tangent, which is the reflected wave 
front. The crests of the Huygens' wavelets all fall on the common tan-
gent, where they interfere constructively; at all other points, the wave-
lets interfere destructively and cancel one other. 

To relate the angles of incidence and reflection, the directions of 
propagation have to be taken into account. This is done in Fig. 6.28, 
where only one incident and one reflected wave crest from Fig. 6.27d 
are included. The application of Huygens' Principle in Fig. 6.28 results 
in a familiar conclusion: the angle of incidence is equal to the angle of 
reflection (Eq. 6.14). This statement may be called the law of wave ref-
lection. 
6.6 Refraction of waves 
When a wave propagates from one medium into another, its direction of 
propagation may be changed. An example of this happening with water 
waves is shown in Fig. 6.29. The boundary here is between deep water 
above and shallow water below. Even though water is the

Equation 6.14 (Law of Ref-
lection) 
 
angle of incidence = i 
 
angle of refraction = R 
 
 i = R 

 

Fig 6.29  Water waves passing from a deeper region to a shallower region are refracted and travel 
in a different direction at the boundary. Huygens' Principle does not reveal which direction the 
waves are traveling. Can you figure this out? (Hint: Look carefully for reflected waves!) 
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material on both sides of the boundary, it acts as a different medium for 
wave propagation when it has different depths. You can see that the 
wavelength is shorter in the shallow water and can infer from this that 
the wave speed is slower there (Eq. 6.3b). 

Figure 6.30  Refraction at a boundary between two media, in which the wave speeds are vi (above boundary) and 
vr (below boundary). The wave speed is assumed to be less below the boundary than above it. (vr is less than vi). 
The waves are moving downward to the right. 
(a) Three wave crests (white lines) are incident on the boundary, which has refracted a section of the waves. 

Point A on the first crest acts as a source of Huygens' wavelets. 
(b) The wavelet from point A has expanded into a semicircle of radius r below the boundary and a semicircle of 

radius i  above the boundary. The latter gives rise to a reflected wave (see Fig. 6.27) and will not be 
described further. The wave crests advance by the distance i. Point B becomes a source of wavelets. 

(c) The wavelet from A has reached radius 2 r , the wavelet from B has radius r . Point C becomes a source of 
wavelets.  

(d) The wavelet from A has radius 3 r , the wavelet from B has radius 2 r , and the wavelet from C has radius r . 
The common tangent line DD' coincides with the refracted wave front. Note the change in the direction of 
propagation (which is perpendicular to the wave front): we can see from the diagram that the refracted 
wave (below the boundary) is traveling slower and in a direction farther from the boundary surface than the 
incident wave (that is, closer to the perpendicular to the boundary). 

 

Equation 6.3b 
 
 v = f  
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The refracting boundary. The change in the direction of propagation is 
called refraction, the same term that was introduced in Section 5.2. We 
will now find the law of refraction of waves by applying Huygens' Prin-
ciple to the propagation of the wave across the boundary between two 
media with different wave velocities. Each point in the wave front that 
touches the medium of refraction acts like a source of wavelets that 
propagate into that medium. These waves have the same

(c) The wavelet from A has radius 2 r ; the wavelet from B has radius r . Point C becomes a source of wavelets.  
(d) The wavelet from A has radius 3 r , the wavelet from B has radius 2 r ,and the wavelet from C has radius r . The 

common tangent line DD' coincides with the refracted wave front. Note the change in the direction of propagation 
(which is perpendicular to the wave front): we can see from the diagram that the refracted wave (below the boundary) 
is traveling faster and in a direction that is closer to the boundary surface than the incident wave (that is, further 
from the perpendicular to the boundary). 

Note: Although we have assumed above that the waves are traveling toward the right, this demonstration can also be 
carried out using the same diagram with the waves traveling in the opposite direction. Thus wave theory based on 
Huygens' Principle predicts that refracted waves will follow the same path in either direction. Does this seem reason-
able to you? Can you suggest any observations or experiments that would confirm or refute this? 

Figure 6.31  Refraction at a 
boundary between two media, 
in which the wave speeds are vi 
(above boundary) and vr  (be-
low boundary). The wave speed 
is assumed to be greater below 
the boundary (vr is greater than 
vi). (This is similar to Figure 
6.30 but the speeds are re-
versed.) The waves are assumed 
to be moving downward to the 
right. 
(a) Four wave crests (white 

lines) are incident on the 
boundary, which has refracted 
a section of the waves. Point A 
on the first crest acts as a 
source of Huygens' wavelets. 

(b) The wavelet from point A has 
expanded into a semicircle of 
radius r below the boundary 
and a semicircle of radius i  
above the boundary. The lat-
ter gives rise to a reflected 
wave (see Fig. 6.27) and will 
not be described further. The 
wave crests advance by the 
distance i . Point B becomes a 
source of wavelets. 
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frequency as their source, and therefore the same frequency as the wave 
in the medium of incidence. The wave in the medium of refraction, how-
ever, where the speed is different, has an altered wavelength, because 
wavelength, frequency, and speed are related by v = f (Eq. 6.15). The 
ratio of the wavelengths in the two media is equal to the ratio of the wave 
speeds, since these two properties of the wave are directly proportional 
as long as the frequency remains the same (Eq. 6.16). Thus, the change in 
medium results in a changed wavelength. 

Construction of the refracted wave front. The procedure for finding 
the law of refraction is very similar to that used in the preceding section 
to find the law of reflection. A straight wave is incident on the refracting 
boundary obliquely from the left. Between each of the four successive 
instants shown in Figs. 6.30 and 6.31, the wave advances by 1 wave-
length. The Huygens' sources on the boundary generate wavelets that 
propagate into the second medium with the wave speed and therefore the 
wavelength appropriate to that medium. The case of reduced wave speed 
and wavelength is illustrated in Fig. 6.30, while the case of increased 
wave speed and wavelength is illustrated in Fig. 6.31. In both cases the 
wavelets originating in points A, B, and C (and intermediate points on 
the boundary) have a common tangent that is the refracted wave front. 

Law of refraction. To relate the angles of incidence and refraction, the 
directions of propagation have to be taken into account. This is done for 
both cases above in Fig. 6.32, where only one incident and one refracted 
wave crest from the previous figures are included. The conclusion from 
the application of Huygens' Principle is that the sines of the angles of 
incidence and refraction have the same ratio as the wavelengths (Eq. 
6.17a) and, therefore, the same ratio as the wave speeds in the two media 
(Eq. 6.17b). This result is similar in form to Snell's Law of Refraction:  
(ni sine i = nr sine r , Eq 5.2, Section 5.2), a key assumption in New-
ton's ray model of light. We shall study this further below in Section 7.2, 
where we will compare and evaluate the ray and wave models in some 
detail. 

If you look at the propagation direction of the refracted waves in Figs. 
6.30 and 6.31, you will recognize that the effect of crossing the boundary 
can be described as follows. In the medium with the slower wave, the 
propagation direction is farther away from the boundary surface; in the 
medium with the faster wave, the propagation direction is closer to the 
boundary surface. You may use the tables of the sine functions (Appen-
dix, Table A.7) to solve problems on the refraction of waves. 

Reflection at the boundary. The application of Huygens' Principle to 
the boundary between the two media leads to reflected wavelets as well 
as refracted ones. One reflected wavelet is indicated in Fig. 6.30b and 
one is indicated in Fig. 6.31b. Since these wavelets are in the medium of 
incidence, their speed and wavelength are appropriate to that medium. 
By pursuing their formation further, we could have obtained the same 
sequence of diagrams as are shown in Fig. 6.27. The wavelets would in-
terfere constructively to form a reflected wave according to the law of 
reflection (Eq. 6.14). Thus wave theory suggests that we should also look 
for reflected waves, and, in fact, by looking carefully, you can indeed 
identify reflected waves in the deeper water of Fig. 6.29! In other
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Figure 6.32 Construction of a mathematical model for wave refraction, based 
on Figs. 6.30 and 6.31. Note that in (a) the medium with the longer wavelength 
(faster speed) is at top in lighter shading. However, in (b) the medium with the 
longer wavelength (faster speed) is at bottom, also in lighter shading. 
In both (a) and (b), Arrows C'D and CD' represent, respectively, the incident 
and refracted propagation directions. They are at right angles to the corres-
ponding wave fronts (white lines) CC' and DD'. ASSUMPTION: Angle C'CD is 
equal to the angle of incidence i and D'DC is equal to the angle of refraction 

r  ; we will prove this assumption in (c) below. The definition of the sine func-
tions can be applied to right triangles CDC' and CDD' with the following re-
sults: 

 i
i

 r
r

'sine (1)

'sine (2)

C D
CD CD
D C
CD CD

  

Divide Eq. (1) by Eq. (2) 

i  i

 r

sine 
sine r

          (3) 

(c) Proof of ASSUMPTION asserted above: the angle of incidence i 
equals the angle between the boundary and the wave front i'. Two 
overlapping right angles in the medium of incidence are indicated in 
the figure (c) above. Both angles i and i' are complementary to the 
angle . Consequently the two angles are equal, i = i'. The same con-
struction with respect to the angle  in the second medium leads to the 
conclusion that r = r'. 
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words, the incident wave appears to be split by the boundary into a re-
flected wave and a refracted wave. Huygens' Principle has indeed served 
us well; however, it does not reveal how the energy carried by a wave is 
divided between reflection and refraction. 

The occurrence of partial reflection gives an important clue about the 
sense of the direction of propagation of waves. By examining only the 
incident and refracted waves, such as in Fig. 6.29, you would not be 
able to determine whether the waves were incident as described at the 
beginning of this section (from upper left), or whether the waves were 
incident from the lower right and passed from the shallow water to the 
deeper water. The observation of reflected waves in the upper part of 
the photograph is evidence that the waves were incident from above. 

Summary 
The concept of waves has its roots in water waves. More generally, 

waves are oscillatory displacements of a medium from its equilibrium 
state. Two important forms that such disturbances can take are the wave 
train, in which the displacement pattern repeats over and over, and the 
wave pulse, in which the displacements are localized in space and time. 
The wavelength, wave number, period, frequency, amplitude, and speed 
of the waves can be defined for a wave train, but only the last two of 
these can be defined for a pulse. The frequency, wavelength, and speed 
of a wave train are related by v = f (Eq. 6.3b). 

The wave theory is built upon the above ideas and applies to a wide 
variety of types of waves. The goal of wave theory is the construction 
of mathematical models to describe the behavior and propagation of 
waves. Wave theory explains and clarifies a large variety of phenome-
na. Such phenomena include sound, music, water waves, radio, light, 
constitution of the atom, traffic flow, and earthquakes.  

The wave theory rests on two key assumptions about waves: 1) the 
superposition principle and 2) Huygen's Principle. The theoretical de-
ductions from these assumptions can be compared with observation to 
identify the successes and the limitations of the wave theory. 

According to the superposition principle, the displacement of the 
combination of two or more waves passing through the same point in 
space at the same time is the sum of the displacements of the separate 
waves. The result is constructive or destructive interference, depending 
on whether the separate waves reinforce or oppose one another.  

Huygens' principle is used to investigate the propagation of waves. 
Each point in a wave front is considered as a source of circular out-
going wavelets. The amplitude and frequency of the wavelets are de-
termined by the amplitude and frequency of the wave at the source 
point. The wavelets interfere constructively along their common tan-
gent line, which is therefore the front of the propagating wave. Else-
where, the wavelets interfere destructively and are not separately ob-
servable. 

Huygens' Principle allows us to conduct thought experiments on the 
propagation of waves and furnishes a procedure for determining

v f

Equation 6.3b
(wave speed)

      
 

Introductory Physics: A Model Approach by Robert Karplus is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.



168 

the results. We have used Huygens' Principle to understand diffraction, 
reflection, and refraction of waves. 

The wave theory does not attempt to relate the wave speed, ampli-
tude, and energy to properties of the medium, the wave source, and the 
wave absorber. These matters require more detailed working models for 
the three systems; their treatment is beyond the scope of this text. 

List of new terms 
medium superposition Huygens' Principle 
 (for wave propagation) interference wave front 
wave train constructive propagation direction 
wave pulse  interference Huygens' wavelets 
amplitude destructive diffraction 
frequency (f)  interference diffraction grating 
wavelength ( ) node reflection of waves 
wave number (k) tuned system refraction of waves 
period (T) beats standing waves 
wave speed (v) wave packet 
  uncertainty 
   principle 
 

List of symbols 
k  wave number f  frequency range (f1 - f2) 

  wavelength k  wave number range (k1 - k2) 
f  frequency v  wave speed 
T  period   diffraction angle 
N  number of waves i  angle of incidence 

s  pulse width R  angle of reflection  
t   time for one beat r  angle of refraction 

Problems 
Here are some suggestions for problems that have to do with water 
waves. Observations on a natural body of water are made most effec-
tively from a bridge or pier overhanging the water. You may observe 
wind-generated wave trains or pulses generated by a stone. By dipping 
your toe rhythmically into the water, you may be able to generate a cir-
cular wave train. 

Experiments can be conducted in a bathtub or sink if natural bodies of 
water are not available. A pencil or comb dipped horizontally into the 
tub near one end can generate straight wave pulses. Dipping your fin-
ger, a pencil or a comb vertically will generate circular waves. To ob-
serve the waves, place a lamp with one shaded bulb over the bathtub so 
as to direct the light at the water surface and not into your eyes. You 
should also avoid looking at the reflected image of the bulb. Under 
these conditions, waves cast easily visible shadows on the bottom of 
the tub or on the ceiling. Caution: You must be careful when using 
electricity near the bath or sink; an electrical shock from household 
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current can be dangerous. Keep water away from the lamp and do 
not under any circumstances touch the lamp with wet hands nor 
while any other part of your body is wet or touching something 
wet. 

 
1. Measure the speed of water waves by measuring how long they 

take to traverse a given distance. Describe the conditions of your 
observations, especially the depth of the water and the amplitude of 
the waves. If you observe wave trains, determine their frequency 
and wavelength and test Eq. 6.3b. 

 
2. Identify the interaction(s) that are involved in the propagation of 

waves on a water surface. 
 
3. Observe waves at the seashore and report qualitatively about as 

many of the following as you can observe. 
(a) Differences in speed of various waves.  
(b) Differences in direction of propagation. 
(c) Applicability of the superposition principle. 
(d) Effect of the depth of the water on the wave motion.  
(e) Reflection of wave fronts.  
(f) Refraction of wave fronts.  
(g) Diffraction of waves. 
(h) Transfer of energy from the waves to other systems. 

 
4. Sand ripples are frequently observed on the ocean or lake bottom in 

shallow water. They are formed by the interaction of sand and wa-
ter just as water waves are formed by the interaction of water and 
wind. Measure the wavelength of sand ripples that you observe. 
Comment on their propagation speed. 

 
5. Observe reflection of water waves in your sink or bathtub. Estimate 

the angles of incidence and reflection as well as you can and com-
pare your results with the law of reflection for waves. 

 
6. Observe single-slit diffraction of water waves in your sink or bath-

tub. Report the slit width you found most suitable and other condi-
tions that helped you to make the observations. 

 
7. Several different diffraction gratings diffract water waves with a 

wavelength of 0.03 meter. Find the diffraction angle for a diffrac-
tion grating with a slit spacing of (a) 0.30 meter; (b) 0.10 meter; (c) 
0.05 meter; (d) 0.025 meter. 

 
8. Water waves are diffracted by a grating with a slit spacing of 0.30 

meter. Find the wavelengths for the waves when the diffraction an-
gle is (a) 10°; (b) 25°; (c) 60°. 
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9. Find the result of superposing the following three waves:  
wave A -- wavelength ( ) = 6 centimeters (cm), amplitude = 3 cm;  
wave B --  = 3 cm, amplitude = 2 cm;  
wave C --  = 2 cm, amplitude = 1 cm.  
Start from a point where all three waves interfere constructively; 
keep plotting until all three waves again interfere constructively.  

 
10. Sound waves in air have a wave speed of 340 meters per second. 

Find the wavelength and wave number of the following sound 
waves: (a) middle C, frequency (f) = 256 per second; (b) middle A, 
f = 440 per second (c) high C, f = 1024 per second. 

 
11. Use the paper strip analogue (Fig. 6.24) to study diffraction of 

waves. Report the wavelength, "slit" separation, and diffraction an-
gle(s) for three different "gratings." Choose /d small (0.5), me-
dium (2.0), and close to one for the three cases. (Note: one grating 
may give several diffraction angles, according to whether the 
waves from adjacent slits are 1, 2, 3, ... wavelengths out of step.) 
Make as many paper strips as you feel necessary to help you. 

 
12. Use the paper strip analogue (Fig. 6.24) to study diffraction from 

only two slits. Measure and/or use geometrical reasoning to find 
the angles of diffraction amplitude maxima (constructive interfe-
rence) and diffraction amplitude minima (destructive interference). 
Compare your results with those obtained for a diffraction grating 
and describe qualitatively the reasons for similarities and differenc-
es. 

 
13. Identify one or more explanations or discussions in this chapter that 

you find inadequate. Describe the general reasons for your judg-
ment (conclusions contradict your ideas, steps in the reasoning 
have been omitted, words or phrases are meaningless, equations are 
hard to follow, . . .), and make your criticism as specific as you can. 
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