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Waves on a water surface are such a familiar and expected occur-
rence that a completely still, glassy pool excites surprise and admiration 
(Fig. 6.1). You can also observe waves on flags being blown by a 
strong wind. In this chapter you will be concerned with how waves 
propagate, what properties are used to describe them, and how waves 
combine with one another when several pass through the same point in 
space at the same time. In the wave theory, which was formulated by 
Christian Huygens during the seventeenth century, the space and time 
distribution of waves is derived from two assumptions, the superposi-
tion principle and Huygens' Principle. The wave theory is very "eco-
nomical" in the sense that far-reaching consequences follow from only 
these two assumptions. 

Waves are important in physics because they have been used in the 
construction of very successful working models for radiation of all 
kinds. You can easily imagine that dropping a pebble into a pond and 
watching the ripples spread out to the bank suggests interaction-at-a-
distance between the pebble and the bank. The waves are the interme-
diary in this interaction, just as radiation was the intermediary in some 
of the experiments described in Sections 3.4 and 3.5. In Chapter 7, we 
will describe wave models for sound and light and how these models 
can explain the phenomena surveyed in Chapter 5. The success of these 
models confirms Huygens' insight into the value of wave theory. How-
ever, Huygen's contributions and wave theory were not fully appreci-
ated and exploited until the nineteenth century. 

Waves were originally introduced as oscillatory disturbances of a ma-
terial (called the medium) from its equilibrium state. Water waves and 
waves on a stretched string, the end of which is moved rapidly up and 
down, are examples of such disturbances. The waves are emitted by a 
source (the pebble thrown into the pond), they propagate through the 
medium, and they are absorbed by a receiver (the bank). Even though 
waves are visualized as disturbances in a medium, their use in certain 
theories nowadays has done away with the material medium. The 
waves in these applications are fluctuations of electric, magnetic, or 

Christian Huygens 
(1629-1695) was born at 
The Hague in Holland. 
His father Constantine, 
a man of wealth, posi-
tion, and learning, 
quickly recognized the 
boy's unusual capabili-
ties. Christian's father 
taught him both mathe-
matics and mechanics, 
and long before his thir-
tieth birthday, Huygens 
had published important 
papers on mathematics, 
built and improved tele-
scopes, discovered a 
satellite of Saturn, and 
invented the pendulum 
clock. In 1665, King 
Louis XIV of France 
invited Huygens to join 
the brilliant galaxy of 
intellects that the "Sun 
King" had clustered 
about him at Versailles. 
After 15 years in Paris, 
Huygens returned to 
spend his last years in 
Holland. These last 
years, however, proved 
to be as remarkable as 
his early years. In 1690, 
Huygens published the 
Treatise on Light, his 
historic statement of the 
wave theory of light. 

Figure 6.1 The re-
flected image gives 
information about 
the smoothness of 
the water surface. 
Why are the reflec-
tions of the sails 
dark and not white?
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gravitational fields, rather than oscillations of a medium. The use of 
such waves to represent radiation has unified the radiation model and 
the field model for interaction-at-a-distance (Section 3.5). Our discus-
sion here, however, will be of waves in a medium and not of waves in a 
field. 

6.1 The description of wave trains and pulses 
Oscillator model. We will analyze the motion of the medium through 

which a wave travels by making a working model in which the medium 
is composed of many interacting systems in a row. Each system is ca-
pable of moving back and forth like an oscillator, such as the inertial 
balance shown below and described in Section 3.4. You may think of 
the oscillators in a solid material as being the particles in an MIP model 
for the material. 

Amplitude and frequency. Each oscillator making up the medium has 
an equilibrium position, which it occupies in the absence of a wave. 
When an oscillator is set into motion, it swings back and forth about the 
equilibrium position. The motion is described by an amplitude and a 
frequency (Fig. 6.2). The amplitude is the maximum distance of the 
oscillator from its equilibrium position. The frequency is the number of 
complete oscillations carried out by the oscillator in 1 second. 

Interaction among oscillators. When waves propagate through the 
medium, oscillators are displaced from the equilibrium positions and 
are set in motion. The wave propagates because the oscillators interact 
with one another, so that the displacement of one influences the motion 
of the neighboring ones, and so on. Each oscillator moves with a fre-
quency and an amplitude. It is therefore customary in this model to 
identify the frequency and amplitude of the oscillators with the fre-
quency and amplitude of the wave. In addition, as you will see, there 
are properties of the wave that are not possessed by a single oscillator 
but that are associated with the whole pattern of displacements of the 
oscillators. 

Conditions for wave motion. The oscillator model described above 
has two general properties that enable waves to propagate. One is that 
the individual oscillator systems interact with one another, so that a 
displacement of one influences the motion of its neighbors. The second 
is that each individual oscillator has inertia. That is, once it has been set 
in motion it continues to move until interaction with a neighbor slows it 
down and reverses its motion. These two conditions, interaction and 
inertia, are necessary for wave motion. 
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Wave trains. Look more closely now at the pattern of the oscillators 
in the medium shown in Fig. 6.3. As a wave travels through the me-
dium, the various oscillators have different displacements at any one 
instant of time. The wave is represented graphically by drawing a 
curved line through the displaced positions of all the oscillators (shown 
above in Fig. 6.3). This curved line, of course, changes as time goes on 
because the oscillators move. Note, however, that the individual oscilla-
tors in the model move only up and down. 

Wavelength and wave number. You can see from Fig. 6.3 that the 
wave repeats itself in the medium. This pattern of oscillators is called a 
wave train, because it consists of a long train of waves in succession. A 
complete repetition of the pattern occupies a certain distance, after 
which the pattern repeats. This distance is called the wavelength; it is 
measured in units of length and is denoted by the Greek letter lambda, 
λ. Sometimes it is more convenient to refer to the number of waves in 
one unit of length; this quantity is called the wave number and it is de-
noted by the letter k. Wavelength and wave number are reciprocals of 
one another (Eq. 6.1). 

Period and frequency. We have just described the appearance of the 
medium at a particular instant of time. What happens to one oscillator 
as time passes? It moves back and forth through the equilibrium posi-
tion as described by a graph of displacement vs. time (Fig. 6.4) that is 
very similar to Fig. 6.3. The motion is repeated; each complete cycle 
requires a time interval called the period of the motion, denoted by a 
script "tee," T. The number of repetitions per second is the

Figure 6.3 Row of oscillators in a medium, showing equilibrium positions and 
displaced positions in a wave. The wavelength is the distance after which the wave 
pattern repeats itself. 
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Figure 6.4  Graph of the motion (displacement) of one oscillator over time. The period
(T) is the time internal after which the motion repeats itself. 
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frequency (symbol f). The period and frequency are reciprocals of one 
another (Eq. 6.2), just as are the wavelength and wave number. The 
period and frequency describe the time variation of the oscillator dis-
placements, while the wavelength and wave number describe the spa-
tial variation. 

Wave speed. One of the most striking properties of waves is that they 
give the appearance of motion along the medium. If you look at the 
pattern of displacements at two successive instants of time (Fig. 6.5), 
you see that the wave pattern appears to have moved to the right (along 
the medium), although the individual oscillators have only moved up 
and down. Since the pattern actually moves, you can measure its speed 
of propagation through the medium. The wave speed is usually repre-
sented by the symbol v (Section 2.2). 

You can conduct a thought experiment with the oscillator model for 
the medium to find a relationship among period, wavelength, and wave 
speed. Imagine the oscillator at a wave crest carrying out a full cycle of 
its motion (Fig. 6.6). While this goes on, all the other oscillators also 
carry out a full cycle, and the wave pattern returns to its original shape. 
The wave crest that was identified with oscillator A in Fig. 6.6, how-
ever, is now identified with oscillator B. Hence the wave pattern has 
been displaced to the right by 1 wavelength. The wave speed is the ra-
tio of the displacement divided by the time interval (Eq. 2.2), in this 
instance the ratio of the wavelength divided by the period (λ/T, Eq. 
6.3a). By using Eq. 6.2, f = 1/T, you can obtain the most useful form of 
the relationship: v = λf, or wave speed is equal to wavelength times 
frequency (Eq. 6.3b). 

Positive and negative displacement. Waves are patterns of distur-
bances of oscillators from their equilibrium positions. The displacement 
is sometimes positive and sometimes negative. In Fig. 6.3, the open 
circles and the horizontal line drawn along the middle of the wave 
show the equilibrium state of the medium. Displacement upward may 
be considered positive, displacement downward negative. In water 
waves, for example, the crests are somewhat above the average or equi-
librium level of the water and the troughs are somewhat below the av-
erage or equilibrium level of the water. In fact, the water that forms the 
crests has been displaced from the positions where troughs appear. 

By definition, the pattern in a wave train repeats itself after a distance 
of 1 wavelength. It therefore also repeats after 2, 3, ... wavelengths. 
Consequently, the oscillator displacements at pairs of points separated 
by a whole number of wavelengths are equal. If you only look at a dis-
tance of 1/2 wavelength from an oscillator, however, you find an oscil-
lator with a displacement equal in magnitude but opposite in direction 
(Fig. 6.7). 

Wave pulses. In the wave trains we have been discussing, a long se-
ries of waves follow one another, and each one looks just like the pre-
ceding one. On the other hand, a wave pulse is also a disturbance in 
the medium but it is restricted to only a part of the medium at any one 
time (Fig. 6.8). It is not possible to define frequency or wavelength 
for a pulse since it does not repeat itself. The concept of wave speed, 

period (time for one 
complete repetition, 
in seconds)           =
frequency (number of  
complete repetitions 
in one second, per 
second)                    = f
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however, is applicable to pulses since the pulse takes a certain amount 
of time to travel from one place to another. In Section 6.2 we will de-
scribe how wave trains and wave pulses can be related to one another. 

 
Examples of wave phenomena. The oscillator model for a medium 

can be applied to systems in which small deviations from a uniform 
equilibrium arrangement can occur. One such system is a normally mo-
tionless water surface that has been disturbed so that water waves have 
been produced. Another example is air at atmospheric pressure in 
which deviations from equilibrium occur in the form of pressure varia-
tions: alternating higher or lower pressure. Such pressure variations are 
called sound waves. A third example is an elastic solid such as Jell-O, 
which can jiggle all over when tapped with a fork. In the oscillator 
model, movement results from oscillating displacements within the 
Jell-O after the fork displaced the oscillators at the surface. 

Oscillator model for sound waves. Since sound in air is of special in-
terest, we will describe an oscillator model for air in more detail. Visu-
alize air as being made up of little cubes of gas (perhaps each one in an 
imaginary plastic bag). When acted upon by a sound source, the first 
cube is squeezed a little and the air inside attains a higher pressure (Fig. 
6.9). The first cube then interacts with the next cube by pushing against 
it. After a while the second cube becomes compressed and the first one 
has expanded back to and beyond its original volume. The second cube 
then pushes on the third, and so on. In this way the sound propagates 
through the air. 

The initial pressure increase above the equilibrium pressure may be

Figure 6.9  A gas bag 
model for air is used to 
represent the propagation 
of a sound wave. An indi-
vidual bag of gas is alter-
nately compressed and 
expanded. Its interaction 
with adjacent bags of gas 
leads to propagation of the 
compression and expansion 
waves. 
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created by a vibrating piano string or a vibrating drumhead. In addition 
to regions of increased pressure, the sound wave also has regions of 
deficient pressure where the air has expanded relative to its equilibrium 
state. 

Thus the sound wave consists of alternating high-pressure (above 
equilibrium) and low-pressure (below equilibrium) regions. A pressure 
profile (pressure versus distance) for a pure tone has the typical wave 
pattern shown in Fig. 6.10. 

6.2 Superposition and interference of waves 
The superposition principle. Can you visualize what happens when 

two waves overlap? In the oscillator model, it is easy to describe the 
medium at a place where there are two or more waves at the same time. 
Each oscillator is displaced from its equilibrium position by an amount 
equal to the sum of the displacements associated with the waves sepa-
rately (Fig. 6.11). In other words, you visualize the oscillator displace-
ments associated with each of the wave patterns and add them together. 
This procedure takes for granted that the waves do not interact with one 
another, but that each propagates as though the others were not present. 

The property of non-interaction we have just described is called the 
superposition principle. It makes the combination of waves simple to 
carry out in thought experiments, and it has been exceedingly valuable 
for this reason. Fortunately, a wave model that incorporates the super-
position principle describes quite accurately many wave phenomena in 
nature. 

Figure 6.10  Pressure profile in a sound wave. The graph shows deviations 
from the equilibrium pressure. 

Introductory Physics: A Model Approach by Robert Karplus is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.



146 

Figure 6.11  Superposition of 
two waves leads to interfer-
ence. One wave is repre-
sented by black dashes, the 
other by dots. The combina-
tion wave is the sum of both 
waves and is represented by 
the solid line. 
 
(a) Constructive interference 
occurs when dotted and 
dashed waves reinforce each 
other. 
 
(b) Destructive interference 
occurs when dotted and 
dashed waves cancel each 
other. 

Interference of waves. Consider now what may happen to the oscilla-
tor motion as a result of the superposition of two waves. The two waves 
may combine in various ways. Perhaps each of two wave patterns has 
an upward displacement of an oscillator at a certain time and at a cer-
tain place. In such a case, the upward displacement in the presence of 
the combined wave will be twice as big as that from one wave alone 
(Fig. 6.11(a)). If there are simultaneous downward displacements in the 
two waves separately, the combined displacement will be twice as far 
down. Suppose you consider a point in space where one wave has an 
upward displacement and the other wave has an equal downward dis-
placement at the same time. Now, the upward (positive) displacement 
and the downward (negative) displacement add to give zero combined 
displacement (zero amplitude of oscillation). In fact, it is possible for  

Figure 6.12 Superposition of two waves leading to partially destructive interfer-
ence. The displacements of the dashed and dotted waves are added together at each 
point to yield the displacement of the combination wave (represented by the solid 
line). Note that displacement below the line is negative. 
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two waves to combine in such a way that they completely cancel one 
another, as in Fig. 6.11b. 

This characteristic of waves makes their behavior different from what 
we expect of material objects, particularly when we think of them as 
single particles (Section 2.1) or as made up of particles. If one particle 
and another particle are combined, you have two particles, and you 
cannot end up with zero particles. Two or more waves, however, may 
combine to form a wave with larger amplitude, a wave with zero ampli-
tude, or a wave with an intermediate amplitude (Fig. 6.12). 

This result of the superposition of waves is a phenomenon called in-
terference. If waves combine to give a larger wave than either one 
alone, you have constructive interference. If waves tend to cancel each 
other, you have destructive interference. There is a continuum of possi-
bilities between the extremes of complete constructive interference 
shown in Fig. 6.11(a) and complete destructive interference shown in 
Fig. 6.11(b). With particles, the concept of destructive interference is 
meaningless in that the presence of one particle can never "cancel" the 
presence of another.  

Standing waves. When two equal-amplitude wave trains of the same 
frequency and wavelength travel through a medium in opposite direc-
tions, their interference creates an oscillating pattern that does not move 
through the medium (Fig. 6.13). Such an oscillating pattern is called a 
standing wave. The points in a standing wave pattern where there are 
no oscillations at all are called nodes. At a node, there is always com-
plete destructive interference of the two wave trains; the displacements 
associated with the two waves at the nodes are always equal and oppo-
site. Because the waves move in opposite directions at the same speed, 
each node remains at one point in space and does not move; this is the 
reason behind the choice of name: a standing wave does not move. 

You can see in Fig. 6.13 that the distance between two nodes must be 
exactly ½ wavelength. This holds true not only for the illustration but 
also for all standing wave patterns. The reasoning is as follows. At any 
node, the two wave displacements must always be equal and opposite 
to produce complete destructive interference. At a distance of ½ wave-
length, the displacement associated with each wave has exactly re-
versed (as illustrated in Fig. 6.7). Thus, the two displacements must 
again be equal and opposite and again produce a node. 

An easy way to set up standing waves is to place a reflecting barrier 
in the path of a wave. The reflected wave interferes with the incident 
wave to produce standing waves. The nodes are easy to find because 
the oscillators remain stationary at a node. This offers a convenient way 
to determine the wavelength: measure the distance between nodes and 
multiply by 2. 

Tuned systems. It is very fruitful to pursue the standing wave idea 
one step further. Suppose an elastic rope is tied to a fixed support at 
each end and the middle is set into motion by being pulled to the side 
and released (see drawing to left). How will the rope oscillate? To solve 
this problem, think of the pattern as being made up of wave trains in 

 

 

The "one-particle model" for a 
real object is a "very small 
object that is located at the 
center... of the region occupied 
by the real object." (Section 
2.1) This is a way to think 
about an object so as to focus 
on the object's position, motion, 
and inertia without considering 
its shape and orientation. 
Complex objects can be 
thought of as two or more par-
ticles that interact in defined 
ways, or with the many-
interacting-particles (MIP) 
model. In such models, each 
particle is thought of as a sin-
gle, tiny bit of matter. The mat-
ter itself is thought of as inde-
structible, or "conserved." Such 
particles cannot "cancel" one 
another to cause destructive 
interference. 
A wave, on the other hand, is 
quite different. A wave, as ex-
plained in this chapter, is 
thought of as a disturbance or 
oscillation that passes through 
matter. The displacement of the 
particles can be positive or 
negative and, as with (+1) + (– 
1) = 0, two waves can cancel 
one another.  
In the 20th century, physicists 
found that matter in the micro-
domain behaves in ways that 
conform with neither the parti-
cle nor the wave model. This 
led to the "wave-particle dual-
ity" and quantum mechanics. 
(Chapter 8). 
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combinations, some moving to the right, others to the left. Because the 
ends are fixed, the wave pattern must be such that the ends of the rope 
are its nodes. The length of the rope is the distance between the nodes, 
which must be an integral multiple of ½ wavelength (Eq. 6.4). It fol-
lows that the wavelengths of the waves that can exist on this rope are 
related to the length of the rope by Eq. 6.5 to satisfy the conditions of 
nodes at the ends. 

A system such as the rope with fixed ends is called a tuned system, 
because it can support only waves of certain wavelengths (Eq. 6.5) and 
the frequencies related to them by Eq. 6.6 (derived from Eq. 6.3b). The 
wave speed is a property of the medium from which the tuned system is 
constructed. 

Figure 6.13  The formation of standing waves by the superposition of two 
wave trains propagating in opposite directions (dotted wave towards right 
and dashed wave toward left). The combination wave is the solid line. Note 
the stationary position of the nodes, marked by the large dots. 
(a) Constructive interference of the two wave trains. 
(b) Partially destructive interference after 1/8th of a period.  
(c) Destructive interference after 2/8ths (1/4th) of a period. 
Can you draw the pattern after 3/8ths of a period? After 4/8ths (1/2) of a 
period?  
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Equation 6.6 (finding 
frequency for a given 
speed and wavelength)
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Musical instruments. Musical instruments employ one or more tuned 
systems whose frequencies are in a suitable relation to one another. For 
stringed instruments, such as the violin and guitar, the tuned system is a 
wire or elastic cord; for wind instruments, it is an air column in a pipe 
closed at one end; for drums, it is an elastic membrane whose edge is 
fixed; and so on. 

The tone of the instrument is determined by the oscillation frequency 
of the tuned system. It is possible to change the frequency either 
through changing the length of the tuned system (and therefore chang-
ing the wavelength of the allowed standing waves) or through changing 
the wave velocity by modifying the medium in the tuned system. 

Sound waves of a single frequency can be produced in closed pipes of 
a certain length. Longer pipes produce lower tones. A pressure wave 
starts at one end of the pipe and travels down the pipe, confined by the 
walls. When the wave reaches the other end of the pipe, it is reflected 
back and interferes with waves coming down the pipe. The interference 
forms a standing wave. This standing wave is of the characteristic 
wavelength determined by the length of the pipe and has the frequency 
that we hear. 

Beats. Standing waves are created by the interference of waves with 
the same frequency. What will be the combined effect of two waves of 
differing frequencies? To answer this question, apply the superposition 
principle in a thought experiment in which two such waves are com-
bined. Suppose the two waves are in constructive interference at one 
instant of time. Since one wave has shorter cycles than the other before 
repeating, they will soon get out of step. After a while, the two waves 
will be in destructive interference, and a little later in constructive inter-
ference again. So the net effect is an alternation from constructive inter-
ference (loud) to destructive interference (soft) and back again. These 
alternations in volume are called beats. 

It is easily possible to calculate the time interval between two beats 
from the difference in frequency of the two interfering wave trains. 
During this time interval the two waves must go from constructive in-
terference to destructive interference and back to constructive interfer-
ence. Therefore, the higher-frequency wave must vibrate exactly once 
more than the lower frequency wave. The additional oscillation restores 
the constructive interference of the two waves, since waves repeat ex-
actly after a whole oscillation. Hence the wave amplitude after the in-
terval is equal to its value before, meaning that the next beat is ready to 
begin. 

The number of oscillations made by either of the two waves is equal 
to its frequency (oscillations per second) times the time interval (N1 = 
f1∆t and N2 = f2∆t, Eq. 6.7). The two numbers, according to the condi-
tion, must differ by one (N1 - N2 = (f1 - f2)∆t, Eq. 6.8). The conclusion 
is that the frequency difference times the time interval is equal to one 
(∆f ∆t = 1, Eq. 6.9). The frequency of the individual waves determines 
the overall pitch of the sound, not the beat frequency; in fact, the beat 
frequency is f1 - f2.  

Wave packets. Standing waves and beats are wave phenomena that 
are observable when two wave trains are combined. You may, of
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course, use the superposition principle and the rules for constructive 
and destructive interference to combine as many different wave pat-
terns as you wish. In the early nineteenth century, it was discovered by 
Joseph Fourier (1768-1830) that any wave pattern could be formed by a 
superposition of one or more wave trains, as illustrated below. All wave 
phenomena can thereby be related to the frequencies, amplitudes, 
wavelengths, and velocities of the component wave trains in a wave 
pattern. 

To illustrate Fourier's discovery, we will construct a wave pulse close 
to the one shown in Fig. 6.8a by combining the four wave trains drawn 
in Fig. 6.14. You are invited to read off the wave amplitudes from the 
graphs, to add the wave amplitudes of the four waves, and to verify that 
the combined wave drawn in Fig. 6.14 really is obtained by superposi-
tion of the four wave trains. By combining more and more wave trains 
of other wavelengths and successively smaller and smaller amplitudes, 
you can achieve further constructive and destructive interference at 
various locations in the pulse. In this way you could obtain a closer and 
closer approximation to the wave pulse shown in Fig. 6.8a and Fig. 
6.14 (see Fig. 6.15). 

The representation of wave pulses by a superposition of wave trains 
has led to the introduction of the suggestive phrase wave packet (in-
stead of wave pulse), which we will also adopt. The superposition pro-
cedure can be quite tedious to work out in detail if many wave trains 
must be combined to achieve success. The essence of the procedure, 
however, is to select wave trains that interfere destructively in one wing 
of the wave packet, constructively at the center, and destructively again 
in the other wing. This can be achieved if one wave train has one more

Figure 6.14 (left)  The superposi-
tion of four wave trains to pro-
duce a wave pulse. 

Figure 6.15 (below)  The wave 
packet in Fig. 6.14 and the pulse 
in Fig. 6.8a have been drawn to 
the same scale for easier com-
parison. 
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full wave over the length of the packet than does the other one. Look, 
for example, at the wave packet with about four ripples shown in Fig. 
6.8c, and reproduced here (Fig. 6.16a). We can combine two wave 
trains (one with four full waves over the length of the packet and one 
with three) to find a first approximation to the desired wave packet 
(Fig. 6.l6b). 

Uncertainty principle. We will now formulate a general principle 
governing the superposition of wave trains to form wave packets. It is 
called the uncertainty principle, and it has played a very important role 
in the application of the wave model to atomic phenomena, which we 
will describe in Chapter 8. 

Physical significance. The content of the uncertainty principle is that 
a wave packet that extends over a large distance in space (large ∆s) is 
obtainable by superposition of wave trains covering a narrow range in 
wave numbers, but that a wave packet that extends over only a short 
distance in space (small ∆s) must be represented by the superposition
  

Figure 6.16  The superposition of wave trains to produce a wave 
packet.  
(a) The wave packet pictured in Fig. 68c, enlarged.  
(b) A very similar wave packet constructed by the superposition of two 
wave trains. 

Introductory Physics: A Model Approach by Robert Karplus is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.


