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The archer bending a longbow, the ski tow pulling a skier, the fire-
man sliding down a brass pole, the housekeeper pulling a magnet off 
the front of a refrigerator, and the child hopping on a pogo stick are all 
examples of energy transfer from among the phenomena in our envi-
ronment. The archer serves as the energy source for the elastic energy 
of the longbow, with the string acting as the coupling element. The 
gravitational field of the fireman and the earth serves as energy source 
for the brass pole and the fireman's hands, with the frictional interaction 
transferring the energy. And so on. 

11.1 Factors in energy transfer 
We will now analyze thought experiments of these two examples in 

more detail, with a view toward making a mathematical model of the 
energy transfer being accomplished by the interaction. It is clear that 
the more the bow is bent by displacement of the center of the string, the 
more elastic energy it stores (Fig. 9.1). The elastic energy can be meas-
ured roughly, though not in the joule unit, by the distance the arrow 
travels when it is released. It is also clear that a child's bow, which can 
be bent by a weaker arm, stores less energy even though it may be bent 
to the same extent. It appears, therefore, that a mathematical model for 
the energy of the bow and the energy transfer to the arrow must take 
into account two factors: the displacement of the string tied to the bow 
and the strength of interaction required to bend the bow. 

An analysis of the fireman sliding down his brass pole leads to the 
same conclusion. The taller the pole, the more thermal energy will be 
created in the brass pole and the fireman's hands. Also, the more mas-
sive the fireman, the more tightly he will have to cling to the pole if he 
is to avoid breaking his legs on impact with the floor, and the hotter his

Figure 11.1  Examples of 
forces.  The earth exerts a 
gravitational force on the 
falling apple. The bent 
fishing rod exerts an 
elastic force on the fishing 
line. 
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hands will become. Both the displacement of the fireman and the 
strength of his interaction with the pole must therefore be taken into 
account in a mathematical model for energy transfer in this example. 

Force and work. We have mentioned the notion of interaction 
strength before. In Chapter 3 it came up as determining the magnitude 
of the response to interaction of an object or system that has inertia. We 
will introduce force as the measure of interaction strength that is appro-
priate to the archer bending his bow, the fireman sliding down his pole, 
the ski lift, and so on—that is, whenever energy transfer accompanies 
the displacement of an interacting object. This energy transfer has been 
given a name of its own; it is called work. In this chapter, therefore, we 
will make a mathematical model that relates work to force and dis-
placement. 

11.2 Interaction and force 
The word "force" is used in everyday language to signify compulsion, 

either physical or mental. In scientific use, the word "force" has a nar-
row and quite specific meaning distinct from its everyday meaning. 
Rather than attempting to present a concise formal definition of force, 
we will use examples to show how the concept of force grows out of 
the more general concepts of interaction and energy. 

The force concept. Isaac Newton (1642-1727) introduced the concept 
of force in his brilliant formulation of a theory for the motion of rigid 
bodies. In this theory, which we will present in Chapter 14, Newton 
ascribed the changes in motion of a body to a net (unbalanced) force 
acting on the body. Newton realized that several interactions might 
compensate for one another and produce no change of motion, as when 
the hands hold the bow and arrow ready for shooting. Only when the 
hand relaxes its hold does a net force exerted by the string on the arrow 
set the latter in motion.  

Examples of force are illustrated in Fig. 11.1.You can see in Fig. 11.1 
that a force has to be described not only by a magnitude (or strength) 
but also by a direction in space. Thus, the gravitational force exerted by 
the earth on an apple acts downward; the bent fishing rod exerts an up-
ward-directed force on the line; the flowing creek water exerts a down-
stream force on the line; and so on. In this respect the force concept 
resembles the relative position and displacement concepts, which were 
described by a distance and a direction in space (Sections 2.1 and 2.3). 
Force will therefore be represented by a boldface letter F in print, by a 
letter F with an arrow over it in writing, and by an arrow in a diagram. 
The magnitude of the force is represented by the symbol |F|, where the 
vertical bars symbolize that only the numerical strength of the force is 
important and that the direction of the force is to be disregarded. Forces 
can be combined (added, multiplied by numbers, and so on) in the same 
way that displacements are combined by arithmetic operations or by 
diagrammatic manipulation of the arrows representing them. 

Force arrows will be 
drawn differently from 
position and displacement 
arrows. 
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The Newtonian theory requires us to think about interaction between 

objects in a different way than we have so far. We have emphasized the 
mutuality of the interaction and have drawn your attention to the entire 
system of interacting objects, including the "field" which transmits the 
interaction. However, in the Newtonian point of view, we must focus 
our attention on one body at a time in order to study its motion. We 
think of interaction between two objects A and B as simply two forces: 
one net force acting on A (exerted by B), and a second net force acting 
on B (exerted by A). These two forces are indicated by arrows in Fig. 
11.2. In a three-body system there are three forces, as shown in Fig. 
11.3; one net force acts on A and is exerted by the subsystem composed 
of B and C, another net force acts on B and is exerted by the subsystem 
composed of A and C, and the third net force acts on C and is exerted 
by the subsystem A and B. In a four-body system there are four net 
forces, and so on. The net force acting on an object in a system of other 
objects is always exerted by a subsystem that includes all the other ob-
jects but not the object itself. In Newtonian theory, an object never ex-
erts a net force on itself. 

Combination of forces. You may find it difficult to visualize the net 
force exerted on body A by the subsystem composed of B and C in Fig. 
11.3. However, you probably find it easier to think of the net force ex-
erted by just one body B on A in Fig. 11.2. The sun-earth-moon system 

Figure 11.3   
(a) Three interacting bodies 
(b) The three  forces of interaction, 
represented by arrows. One force acts 
on each body. 

Figure 11.2   
(a) Two interacting bodies 
(b) The two forces of interaction, 
represented by arrows. One force 
acts on each body. 
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is an example in which the moon is subject to the net force exerted by 
the sun-earth subsystem. 

Now, the Newtonian method for dealing with such a three-body 
system is to simplify it by imagining the three-body system to be made 
up of three overlapping two-body subsystems (Fig. 11.4). There is an 
interaction within each two-body subsystem, and therefore a force 
exerted on A by B (in the A-B subsystem) and a force exerted on A by 
C (in the A-C subsystem) (Fig. 11.5). In the Newtonian theory it is 
assumed that each of these interactions is unaffected by the presence of 
the third body. In the astronomical example above, it is assumed that 
the earth-moon interaction is not affected by the sun, and the sun-moon 
interaction is not affected by the earth. This step may or may not seem 
appropriate to you, but it is central to grasping Newtonian theory. 

The next step is to represent the two partial forces acting on A 
(exerted by B and by C) by arrows (Fig. 11.6a). The last step in finding 
the net force on A is to combine all the partial forces according to the 
procedure described in Section 2.3 for the addition of displacements.

Figure 11.5 Analysis of forces in a three-body system.  
(a) The interaction of A and B in the three-body system (Fig. 11.4) is assumed 
equal to the interaction of A and B in the two-body subsystem.  
(b) The interaction of A and C in the three-body system (Fig. 11.4) is assumed 
equal to the interaction of A and C in the two-body system. 

Figure 11.4  Two overlapping 
subsystems of the three-body 
system A-B-C. 
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The tail of one arrow in the diagram is attached to the head of the other 
(Fig. 11.6b). The overall arrow from the tail of the first to the head of 
the second is the net force acting on body A. The net force is the sum of 
the partial forces, with directions and magnitudes of the partial forces 
being taken into account. The combination of forces is described 
further at the end of this section. 

Mechanical equilibrium. If a body is not subject to a net force, then 
its motion is steady and does not change. Such a body is said to be in 
mechanical equilibrium, and the partial forces acting on it are called 
balanced. The apples on the tree, the fisherman's boots, and the steadily 
flowing brook water in Fig. 11.1 are in mechanical equilibrium. The 
falling apple, the turbulent brook water, and a boy swinging nearby are 
not. What about the tip of the fishing rod? 

If a body in equilibrium is at rest, it remains at rest; if the body in 
equilibrium is in motion, it remains in steady motion with a constant 
speed in the same direction. This is not really a new result, because one 
kind of evidence of interaction described in Section 3.4 was the change 
in motion of interacting objects. In that section we pointed out that a 
body might not exhibit any change in motion, even though it is subject 
to interactions, if the interactions compensate. Alternate ways of 
describing this condition are mechanical equilibrium, a zero net force, 
and the balance of the partial forces acting on the body. 

For an example of a body 
in equilibrium and in 
motion at the same time, 
think of your luncheon tray 
on a jet airliner moving at 
a constant 600 miles per 
hour relative to the ground. 
(What happens when the 
motion of the airliner 
changes suddenly?) 

Figure 11.6 Partial and net 
forces in a three-body system.  
(a, above) Newtonian diagram 
for partial forces exerted on A 
by B and by C separately.  
(b, below) Addition of arrows 
that represent the partial forces 
acting on A to find the net force 
on A. 
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Addition of partial forces. The net force is absent (or equal to zero) if 
the arrow representing it in a diagram has zero length. This condition is 
achieved if the partial forces are represented by arrows that form a 
closed chain, with the head of the last arrow reaching the tail of the first 
arrow (Fig. 11.7). If only two partial forces are acting on a body in 
mechanical equilibrium, then the two must be represented by arrows of 
equal length and opposite direction (Fig. 11.7a). Three partial forces 
form a triangular diagram (Fig. 11.7b), and so on. Thus Fig. 11.7 illus-
trates sets of partial forces that are balanced. A body that is not in me-
chanical equilibrium (i.e., it is subject to a net force) can be brought to 
equilibrium by the application of an additional force that is equal in 
magnitude and opposite in direction to the net force. 

Origin of the forces. This discussion of mechanical equilibrium has 
referred to a single body and the partial forces acting on it. The origin 
of the forces was not mentioned. Nevertheless, forces are a measure of 
interaction strength, and you should be aware of the interactions that 
operate even though you temporarily concentrate your attention on the 
motion or lack of motion of one particular body in the system. In par-
ticular, the interaction will affect the motion of the other bodies in the 
system. 

Operational definition of force. The calculation of the net force act-
ing on an object is based on measurements of the partial forces, and 
such measurements are in turn based on an operational definition of 

Figure 11.7 Body A is in 
mechanical equilibrium. 
Symbols B, C, and D 
represent the forces exerted 
on A by the corresponding 
bodies,  
(a) Two balanced forces of 
repulsion, 
 (b) Three balanced forces. 
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force. We will now construct such an operational definition by selecting 
a force measuring device, calibrating it in standard units of force called 
newtons, and describing a procedure for using the device.  

Any system that gives reliable and reproducible visual evidence of the 
action of a force can be used as force measuring device. A bow can be 
used, or a spring, or a rubber band. All these systems show a deforma-
tion when subject to a force, and return to their undeformed state when 
the force ceases to act. They are examples of elastic systems and will 
be discussed in greater detail in Section 11.6. 

Standard spring scale. For convenience, we will select springs as 
force measuring devices. Springs may be deformed by stretching or by 
compression (Fig. 11.8). To calibrate a spring, we attach objects of 
various masses to the end of the spring and allow them to hang freely 
and vertically (no swinging) in the gravitational field of the earth. Such 
an object is subject to two partial forces: the downward force exerted 
by the earth via the gravitational field and the upward elastic force ex-
erted by the spring. After such an object is allowed to come to me-
chanical equilibrium (that is, to stop bouncing), the spring is stretched 
just enough so that the force it exerts is equal in magnitude to the gravi-
tational force. 

It would be natural to choose a 1 kilogram mass as the standard object 
for one unit of force. For historical reasons we will not do this, but in-
stead, we will choose a weight with a gravitational mass of 0.10 kilo-
gram. This is the same standard object used to define the joule in Sec-
tion 9.2. We will explain this apparently arbitrary choice in Chapter 14. 

The unit of force on our scale is called a newton. The scale is marked 
1 newton when a 0.10 kilogram weight hangs on the spring, 2 newtons 
when two such weights hang on the spring, and so on (Fig. 11.9). The 
spring with a scale is called a spring scale. 

Definition. The operational definition of force employs a spring scale 
calibrated in newtons. When the spring scale is used to measure the net 
force acting on a body, it is attached to the body and used to hold it in 
mechanical equilibrium (Fig. 11.10). The magnitude of the net force is 
then equal to the scale reading. The direction of the net force is the di-
rection in which the spring scale is extended. For the sake of simplify-
ing the diagrams, we will henceforth represent spring scales by dials 
without numerical scale indications. The scale reading will be printed 
near the dial. 

 
Figure 11.8  Springs can be used to 
measure forces,  
(a) A spring not subject to forces,  
(b) The same spring deformed by 
stretching,  
(c) The same spring deformed by 
compression. (Compressed springs are 
usually kept inside a tube to prevent them 
from bulging to the side.) 

 
OPERATIONAL DEFINITION 
Force is measured by a 
standard spring scale. The 
magnitude of the force is 
indicated by the scale reading. 
The direction of the force is 
indicated by the direction of the 
spring scale. 
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Partial forces. The spring scale can also be used to measure partial 
forces acting on a body, like the force exerted on the fishing rod by the 
fisherman's left hand in Fig. 11.1. To do this, you only have to let the 
spring scale, instead of the man's left hand, hold the fishing rod in the 
same position. The force exerted by the spring scale then replaces and 
is equal to the force exerted by the hand. Other examples of the substi-
tution method for measuring partial forces are shown in Fig. 11.11. 
Frequently these "measurements" are only carried out in thought ex-
periments and the actual data come from the interpretation of indirect 
evidence. 

Figure 11.9 Calibration of a standard spring scale with weights having a mass of 0.10 
kilogram. The arrow represents the direction of the force exerted on the spring scale. 

Figure 11.10 The net force 
acting on the wagon in the 
absence of the spring scale 
is 2.1 newtons to the right. 
The partial forces acting 
on the wagon are exerted 
by the mouse (to right), the 
table (up), the earth 
(down), and the spring (to 
left). 
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Addition of partial forces. Now that we have introduced a procedure 
for measuring forces, we can repeat some of the earlier explanations 
with quantitative illustrations. It is usually helpful to begin by making a 
force diagram, with an arrow for each partial force; the length of each 
arrow is scaled to the magnitude of the force (see Figs. 11.6 and 11.7). 
Since this is a force diagram and not a diagram or map of the position 
of the bodies on which the forces act, the force arrows can be drawn 
anywhere, as long as they have the correct magnitude and direction. To 
find the net force, draw one force, then draw the second with its tail 
attached to the head of the first, the third with its tail attached to the 
head of the second, and so on, until all forces have been added. Then 
draw an arrow from the tail of the first force to the head of the last one 
(Fig. 11.6b); this is the net force. 

An alternative method of adding forces using arithmetic is to find and 
add the corresponding rectangular components of the forces. This ap-
proach requires the introduction of a rectangular coordinate frame (Fig. 
11.12). The x component of the net force is then the sum of the x com-
ponents, and the y component of the net force is the sum of the y com-
ponents (Eq. 11.1). We recommend that you choose the x- or y-
coordinate axes in the same direction as one or more of the forces (Fig. 
11.13). If you do this, the components of these forces are especially 
easy to find. The components of forces not in the direction of the axis 
may be found graphically or with the sine and cosine functions. 

It is also possible to use the method of addition of forces to find an 

 
 
Figure 11.11 The substitution method 
for measuring partial forces. 
(a) Compression spring scale is used to 
measure the partial force exerted by the 
floor on one table leg. 
(b) Extension spring scale is used to 
measure the partial force exerted by the 
swing frame on the rope. 

Figure 11.12 Three partial 
forces F’, F’’, F’’’ and the 
net force F with the following 
rectangular components: 
F’   = [1.0, 1.0] newtons  
F’’  = [-2.0. 4.0] newtons  
F’’’ = [-3.5, 0.0] newtons  
F    = [-4.5, 5.0] newtons  
(see Eq. 11.1). 

Equation 11.1 
(Forces are defined in Fig. 
11.12.) 
 
F' +F'' + F''' = F 
 
[1, 1] + [-2, 4] + [-3.5, 0]   
  = [-4.5, 5.0]  
 
F = [-4.5, 5.0] newtons 
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unknown partial force if the net force is known. This problem is similar 
to the earlier one in which, given the first part of a sailing trip and the 
destination, we showed how to use subtraction of displacements to find 
the displacement needed to complete the trip (Section 2.3, Fig. 2.19). A 
problem of this kind with forces is worked out below (Fig. 11.14). 

Figure 11.13 Examples of the addition 
of forces: 
 
(a) partial forces: 
[2.0, 0.0] newtons  
[0.5, 5.0] newtons  
[-1.0, -2.0] newtons  
[-3.0, 2.0] newtons  
net force: 
[-1.5, 5.0] newtons 
 
(b) partial forces: 
[4.0, 0.0] newtons  
[1.0, 1.5] newtons  
[-1.0, 2.5] newtons  
[-2.0, -1.0] newtons  
[-2.0, -3.0] newtons  
net force: 
[0.0, 0.0] newtons 
 
Note: The coordinate axes are 
purposely oriented at an angle, so that 
the x-axis is in the same direction as 
one of the forces. This is a good way 
to simplify the calculation. In fact, this 
technique of setting up the coordinate 
axes to fit the problem can be a 
powerful aide in problem solving. 

Figure 11.14  Example of how to 
find one partial force when the 
net force and the other partial 
forces are known. 
 net force: [-2.0, -4.0] newtons  
partial forces: 
 [3.0, 1.0] newtons 
 [-0.5, 3.0] newtons 
 [-3.0, -1.0] newtons  
missing partial force : 
 [-7.5, -7.0] newtons 
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11.3 The gravitational force 
The gravitational interaction between the earth and objects near its 

surface is very important for all of us who dwell on the earth. You can 
measure the force of gravity exerted by the earth on any object free of 
other interactions by hanging the object from a spring scale. Then the 
force exerted by the spring scale compensates the force of gravity and 
holds the object in mechanical equilibrium. 

We have already described how you may use a plumb line to define 
the direction of vertical (p. 15). In comparing this with the definition of 
force, you see that the vertical is precisely the direction of the force of 
gravity exerted by the earth on any nearby object. If you were to carry 
out the force measurement at various places on the earth, you would 
find that the direction is toward the center of the earth and that the 
magnitude is the same. 

We will use the boldface symbol FG for the force of gravity on an ob-
ject. The directions of FG at various places on the earth's surface are 
shown in Fig. 11.15. The magnitude of the force of gravity on an object 
with mass of 0.10 kilogram is, by definition, 1 newton. The force on 
other objects is described by the following mathematical model: |F| = 
10MG (Eq. 11.2). 

These spring scale measurements can be made with the object at rest 
or in steady, or uniform, motion relative to the earth's surface (Fig. 
11.16). However, if the motion of the object changes, then a spring 
scale does not measure the net force (Fig. 11.17). These statements can 
be tested experimentally. 

Gravitational intensity. The strength of the gravitational interaction is 
close to 10 newtons per kilogram, regardless of the shape, composition, 
or other properties of the object, and it is directed vertically downward. 
The symbol g is used to denote the gravitational force per unit mass, 
and it is called the gravitational intensity (Eq. 11.3). The relation of 
gravitational force, gravitational intensity, and mass is given by 

(10 / ,
)

10 /
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at the surface of
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newtons kg

=

=

Equation 11.3
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Figure 11.15  The force of 
gravity at various 
locations on the earth. 
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Eq. 11.4, which is a restatement of Eq. 11.2. On the sun and the moon, 
the gravitational intensity has different values than it does at the earth's 
surface (Table 11.1). 

You may wonder whether the fact that the force of gravity is propor-
tional to the gravitational mass is a law of nature, or whether it is a re-
sult of our definition of the magnitude of the force. Actually, it is the 
latter. After all, we calibrated the spring scale by hanging objects on it 
while they were subject only to the earth's gravitational field and we 
marked force units in proportion to the mass, 1 newton for every 0.10 
kilogram. 

Figure 11.16 (above)  The force of gravity acting on the fish is measured, properly, 
as 100 newtons whether it is being weighed inside a train moving at constant speed 
in a straight line (at right) or at rest in the station (at left).. In both cases, the fish 
and scale are moving at constant velocity relative to a reference frame fixed on the 
surface of the earth. The fish is in mechanical equilibrium in both situations.The 
essential similarity of these two situations is the basis of Newton's first law and will 
be explained in more detail in Section 14.2. 

Equation 11.4 (force 
of gravity at surface 
of earth) 
 
force of gravity 
 (newtons) = FG 
gravitational mass 
 (kg) = MG 
gravitational intensity 
 (newtons/kg) = g 
at surface of earth: 
 g = (10 newtons/kg,  
      downward) 
 
 FG  = g MG 

Figure 11.17 (to right) 
The force of gravity 
acting on the fish is 
not measured 
correctly by the spring 
scale under the 
conditions shown. As 
the carousel turns, the 
velocity of the fish is 
not constant but is 
changing in direction 
(though not 
magnitude). As a 
result, the fish is 
accelerating and not 
in equilibrium. 

TABLE 11.1  
GRAVITATIONAL 
INTENSITY (g) 
 
Location   gavita- 
 tional 
 intensity  
 (g, new- 
 tons/kg) 
earth's  
surface 10 
 
sun's 
surface 270 
 
moon's  
surface 1.7 
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11.4 Work 
The concept of work represents a key connection between two different 

styles of thought and two different types of theory: 1) A "wholistic," 
"systems," or "field theory" approach  based on concepts such as energy, 
waves, and fields (gravitational, electric and magnetic). These concepts 
all apply to a system as a whole or to an extended region of space. 2) A 
Newtonian, particle-based approach, based on breaking a system down 
into its parts (each piece reduced to a simple mass-point at a defined po-
sition in space), analyzing the interactions between the various particles, 
identifying all the forces acting on any individual particle, finding the net 
force on that particle, and repeating this procedure for each particle in the 
system so as to build up an understanding of the system as a whole. 

In Chapters 1-10, we explained the concepts of interaction and energy 
and how to apply them in many situations. In particular, we have empha-
sized how the interaction of a system of objects can be thought of as aris-
ing from various types of "fields," (gravitational, magnetic, electric and 
so on). We have focused on interactions between objects as phenomena 
in which all of the objects participate, as part of a system in a shared, 
mutual way. This has involved, to a large extent, a "wholistic" or "sys-
tems" style of thinking, as described above.  

In this Chapter, we have introduced the concept of "force," which re-
quires thinking about the interacting objects individually and then two-
by-two so as to identify and add up all of the forces acting on a particular 
object. This style of thinking is very different from much of what we 
have explained so far, but it is essential to understanding Newtonian the-
ory. This theory, in turn, provides a powerful tool with which to analyze 
many of the systems we have already encountered, leading to additional 
models and increased understanding. 

More specifically, we will now show how work connects the Newto-
nian concept of force (defined in Section 11.2) with the concept of en-
ergy (a more "systems-oriented" idea, as defined in Sections 9.2 to 9.4).  
We will first provide a general context for this new concept; we will then 
define work formally as well as with a mathematical model, explain in 
detail how to calculate it, and show that this calculation yields the same 
numerical result as do our earlier calculations of energy changes. 

Figure 11.18  
Energy transfer to 
the bow occurs 
during displacement 
of the center of the 
string, where the 
archer's hand exerts 
a force. 

WORK IN PHYSICS  
Energy transfer resulting 
from a force acting on an 
object that is displaced  in 
the direction of the force. 
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We gave an informal definition of work above in Section 11.1: the energy 
transfer that "accompanies the displacement of an interacting object." To 
be more precise, work refers to the energy transfer resulting from a force 
acting on an object that is displaced in the direction of the force. For 
example, when the archer bends his bow, one hand interacts with the 
center of the string and one hand interacts with the center of the bow. Both 
hands exert forces, one on the string, the other on the bow. But only the 
center of the string is displaced; the arm holding the bow is rigid (Fig. 
11.18). The energy transferred from the archer to the bow and string 
system is called the work done by the force his hand exerted on the string. 
The force exerted on the bow did no work because the center of the bow 
was not displaced. 

Definition of work. We now present a more formal definition of work 
that can be used in calculations: Work is the product of the magnitude of 
the force and the displacement component in the direction of the force. 

This definition is restated to the left as a mathematical model (Equation 
11.5). The overall procedure for calculating work is to identify the force, 
find its magnitude, identify the displacement, find its component in the 
force direction, and multiply these two numbers. This procedure is illus-
trated in figure 11.19 and summarized in the left margin.  

There are two important points to keep in mind when using the above 
definition to calculate work. First, both force and displacement have a 
direction in space. The work done depends on the relative direction of the 
force and the displacement and does not change if both arrows are reori-
ented without changing their relationship in space.  

Second, the work concept can be associated with any force, net or partial. 
When several forces are acting on a body, you can use the definition to 
find the work done by each partial force and you can find the work done 
by the net force. In the example of the bent bow, for instance, the net force 
on the bow and string system was zero; hence, it did zero work. The partial 
force acting on the bow also did zero work, because the center of the bow  

FORMAL DEFINITION 
Work is the product of the 
magnitude of the force and the 
displacement component in the 
direction of the force. 

Equation 11.5 (Work) 
 work (joules) = W 
 force magnitude 
  (newtons) = |F| 
 displacement magnitude 
  in force direction  
  (m) = ∆sF 

   W = |F| ∆sF 

Detailed procedure for 
calculating work (W), 
illustrated in Figure 11.19 to 
right. 
1. Identify the force and draw 
the force arrow, F, pointing in 
approximately the correct 
direction. Find the magnitude 
of the force in newtons. (Don't 
draw the coordinate frame 
first; the calculation is simpler
if you do that in the next step!) 
2. Now draw the coordinate 
frame with the x-axis parallel 
to the force arrow; 
3. Identify the direction and 
magnitude of the displacement 
(∆s); 
4. Draw ∆s, the displacement 
arrow, on the coordinate 
frame with its tail starting at 
the origin;  
5. Draw the dashed line from 
the point of ∆s  parallel to the 
y-axis until it crosses the x-
axis;  
6. Draw and measure (or 
calculate) the length of ∆sF 
(the x-component of ∆s). 
7. Calculate W from Eq. 11.5 
(W = |F| ∆sF). 

Figure 11.19. 
Calculating work: 
finding ∆sF 
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was not displaced. Only the partial force acting on the string did work. This 
example shows that the work done by the net force acting on a system may 
not be equal to the sum total of the work done by all the partial forces acting 
on the same system. 

Work is a numerical quantity measured in joules; it does not have a direc-
tion in space. Zero work is done when the displacement is zero. Zero work 
is also done when the displacement is at right angles to the force, for then 
the displacement component in the direction of the force is zero. 

We now must verify that this definition of work really represents energy 
transfer in accord with at least one of the operational definitions of energy 
explained in Chapter 9. This is most easily accomplished for the definition 
based on raising an object in the gravitational field, in which energy is 
measured in joules (Eq. 9.2, E = 10MGh, Fig. 9.8).  

Example 11.1 below shows how to calculate the work done when a weight 
is raised or lowered and the energy stored in the gravitational field is 
changed. You can see that this result is in agreement with the mathematical 
model (Eq. 9.2) based on the operational definition. From now on we will 
use Eq. 11.5 to describe energy transfer whenever this occurs in the form of 
work, and we will not use the operational definition of energy in joules ex-
cept for illustrative purposes. 

EXAMPLE 11.1. How much work is done when a weight is raised? Is the 
work equal to the energy transfer described by Eq. 9.2? 

Solution: We must find the force and the displacement to be able to use the 
definition of work, Eq. 11.5. The important step is to think of raising the 
weight so slowly that it is always very close to mechanical equilibrium and 
does not acquire kinetic energy. Then the force acting on the weight is equal 
in magnitude, opposite in direction, to the force of gravity (Eq. 11.4), 

|F| = |FG| = |g| MG = 10 MG 
The displacement (see diagram to left) has the magnitude h and is directed 

along the force. Hence the displacement component in the force direction is 
equal to h, 
∆sF= h 
The work done is W = |F|∆sF = |g| MGh = 10 MGh in agreement with Eq. 

9.2. 
Gravitational field energy. The fireman sliding down the pole, the ski tow 

pulling the skier, and the child hopping on the pogo stick are all phenomena 
in which energy stored in the gravitational field is either increased or de-
creased as the height of an object is increased or decreased. 

One point that is sometimes a source of difficulty in dealing with gravita-
tional field energy is the absence of a natural reference state in which the 
energy stored in the gravitational field is zero. It is always possible to in-
crease the energy in the gravitational field by raising an object near the 
earth, and it is possible to decrease this energy by lowering the object. 

Because there is no natural reference state, you may choose the most con-
venient state as reference state. Usually you should choose the state with the 
lowest gravitational field energy that occurs in the phenomenon, as when the 
fireman is on the ground floor or the skier is in the valley (Fig. 11.20). Then 
you can ascribe positive energy values to the states of greater gravitational 
field energy than the reference state, as when the fireman is 
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upstairs or the skier is on his way up the hill. States that have less gravita-
tional field energy than the reference state are described by negative 
energy values, as when the fireman is in the cellar of the firehouse. The 
height of the object in the system is measured from the level of the refer-
ence state (reference level). 

Since the definition of the mechanical energy scale made use of gravita-
tional field energy, you can obtain a mathematical model for the field 
energy directly from Eq. 9.2. The result is stated in Eq. 11.6. The height 
that occurs in this formula is measured from the chosen reference level as 
described above. The mathematical model works well for objects near the 
surface of the earth, as illustrated in Fig. 11.20. However, when an object 
is displaced far above or below the surface of the earth (Fig. 11.21), you

Equation 11.6 
 
gravitational field energy 
 (joules)  = EG 
gravitational mass (kg) = MG 
height (m)  = h 
gravitational intensity 
 (newtons/kg)  = g 
 
 EG =|g|MGh  (a) 
 
at the earth's surface: 
 EG = 10 MG h  (b) Figure 11.21  Cross-

sectional view of the 
earth. The model for 
gravitational field energy 
(Eq. 11.6) breaks down 
when the object is 
displaced to locations 
where the gravitational 
intensity is different from 
its value at the earth's 
surface. The model is 
applicable in the shaded 
region (body B). It is not 
applicable at the location
of bodies A or C. 

Figure 11.20  The gravitational 
field energy (see Eq. 11.6) is 
calculated relative to the specific 
reference levels shown in the 
diagram. 
(a) Fireman: EG = |g|MG h 
  = 10 x 70 x 2 
   = 1400 joules 
(b) Skier Y: EG = |g|MG h 
  = 10 x 70 x 3 
  = 2100 joules 
     Skier V: EG = |g|MG h 
  =10 x 60 x 6.5 
  = 3900 joules 
(c) Child: EG = |g|MG h 
  = 10 x 30 x 0.2 
  = 60 joules 

Introductory Physics: A Model Approach by Robert Karplus is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.



Chapter 11 – Force, displacement, and energy transfer 295 

 
should expect the model to break down because the model in Eq. 11.4 for 

the force of gravity breaks down under those conditions. 
Is the work done on an object near the surface of the earth always com-

patible with Eq. 11.6? In Example 11.1 we examined the work done on an 
object that was raised vertically and found agreement. Is agreement also 
obtained when the object is displaced to the side or obliquely? 

Since the force of gravity is in the vertical direction, only the vertical 
component of the displacement is used to calculate the work done by the 
force of gravity (Example 11.2). The horizontal component of the dis-
placement does not contribute to this work. Consequently, the horizontal 
component of the displacement does not change the gravitational field en-
ergy. This result is in accord with the commonsense expectation that only 
raising or lowering of objects affects the gravitational field energy and that 
sliding an object sideways (for example, a skier walking on level ground) 
does not affect the gravitational field energy. 

 
EXAMPLE 11.2. How much work is done when an object is raised 
obliquely (that is, along a diagonal), rather than straight up, as in Example 
11.1? 
Solution: This problem is very similar to Example 11.1. Again, we move 
the weight so slowly that it is always very close to mechanical equilibrium 
and does not acquire kinetic energy. Then the force acting on it is equal in 
magnitude, and opposite in direction, to the force of gravity (Eq. 11.4), 

|F| = |FG| = |g| MG = 10 MG 
The displacement (see Fig 11.21 to left) is not directed along the vertically 
upward force. We can, however, find the rectangular components of the 
displacement (Fig. 11.21). The vertical component is equal to h, 
∆sF = h  

The work done is 
W = |F| ∆sF = |g| MG h = 10MG h. 

This is the same result as found in Example 11.l. 

11.5 Electrical force and energy 
The interaction of electric charges was described in Section 3.5 and was 
applied in a crucial way in the construction of models for atoms in Chapter 
8. We will now describe the magnitude of the force between electrically 
charged objects. Charles Augustin de Coulomb investigated this defini-
tively with a very delicate spring balance. 

By carrying out many experiments with the electrically charged objects 
closer together and farther apart. Coulomb constructed a mathematical 
model in which the electrical force of interaction varies inversely as the 
second power of the distance R between the charged objects (Fig. 11.22). 
He also found, by testing objects with various quantities of electric charge, 
that the mathematical model must include a dependence of the force on the 

Charles Augustin de Coulomb 
(1736-1806) was a French 
army officer of engineers who 
spent several years in the 
West Indies until failing 
health forced his retirement to 
France. After his return, he 
won a prize from the French 
Academy for a paper, Theorie 
des Machines Simples, in 
which the law of friction was 
announced. Coulomb's most 
important work, however, was 
his measurement of the forces 
of electrical attraction and 
repulsion, and his formulation 
of the mathematical model 
that describes them. 

Figure 11.21  Raising a weight 
obliquely (along a diagonal). 
The work done is 10 MGh, 
which depends on the vertical 
height (h = ∆sF) and not the 
diagonal displacement (∆s). 
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two charges: the force is proportional to the product of the two charges  
q1 and q2. When the dependence on the distance and charge are com-
bined, we obtain the model for the magnitude of the force described in 
Eq. 11.7, called Coulomb’s law. The direction of the electrical force is 
along the line from one charged body to the other. It is attractive or re-
pulsive, depending on whether the charges are opposite charges or like 
charges (Section 3.5). 

The very large factor (8.4 x 1019) in Coulomb's law means that 1 fara-
day is a charge that exerts enormous forces on charged objects nearby. 
Laboratory experiments in which objects become electrically charged, 
therefore, produce objects with very small charges (as measured in 
faradays). 

The energy stored in electric fields may be calculated from the work 
that electrical forces can do when a charged object is displaced. Unfor-
tunately, the electrical force changes so rapidly with displacement of 
the object (Eq. 11.7) that a simple average value to use in calculating 
the energy is not evident. We will therefore not make a mathematical 
model for the electrical energy, but you may like to consult a more ad-
vanced text where this is done. 

Because the electrical forces are so large, electric charges are rarely 
and not conveniently separated from a macro-domain quantity of mat-
ter. Macro-domain electric fields are not easy to produce and do not 
furnish a technologically useful type of energy storage. In the micro 
domain, however, electric fields provide an extremely significant type 
of energy storage, because of their role in the many-interacting-
particles model for matter (Sections 4.5, 8.1, and 11.7). 

11.6 Elastic energy and elastic force 
Elasticity. We have used the archer's bow as an example of a system 

that can store energy. The spring in the standard spring scale also can 
store energy when it is deformed from its equilibrium configuration by 
interaction with a weight or some other object. When released, it will 
spring back to its free equilibrium configuration. Such a system is 
called an elastic system. The energy stored by an elastic system when it 
is in its deformed configuration is called elastic energy. The force it 
exerts is called an elastic force. When an elastic system is deformed, 

1 2
2

1 2

19

electrical force 
   (newtons) = 
electrical charge
   (faradays) = q  , q
distance between 
   bodies (m) = R

q q    | | = 8.4 10
R

×

Equation 11.7 
(Coulomb's Law)

F

F

"... the mutual attraction of 
the electric fluid which is 
called positive on the 
electric fluid which is 
ordinarily called negative 
is in the inverse ratio of the 
[second power] of the 
distances . . .“ 

Charles Augustin de 
Coulomb  
Memoires de l’Academie 
Royale des Sciences, 
1785 
 

Figure 11.22 Conditions of 
Coulomb's experiments. Two 
bodies with electric charges 
q1 and q2 are separated by a 
distance R. The force is di-
rected along the line joining 
the two bodies. 
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the deforming force does work and transfers energy to the elastic sys-
tem where it is stored as elastic energy. When the elastic system springs 
back, the elastic force does work and the energy is returned to the ob-
jects in the environment with which the elastic system is interacting. 
Bow and arrow, a toy car with a spring motor, or a watch with a spring 
are good examples of systems where energy is stored in an elastic sub-
system. 

Many solid objects exhibit elasticity, that is, a tendency to spring back 
after they are deformed. The deformation may occur in any one of 
many different ways. A coil spring, for example, may be coiled up more 
tightly. A fishing rod or a bow may be bent away from their original 
straight shapes. A piano wire may be stretched as the instrument is 
tuned. A paper clip may be opened slightly when it is slipped over a 
stack of papers. Branches of a tree may sway in the wind—even sky-
scrapers and bridges may sway in the wind. 

Elastic limit. By contrast, there are many solid materials, such as clay 
and putty, which are inelastic. If they are deformed into a new shape, 
they retain that shape; they do not spring back. You know from every-
day experience, however, that even elastic systems cannot be deformed 
indefinitely. If the paper clip is opened too far, it will remain in its new 
configuration. If the fishing rod is bent too far, it snaps. The smallest 
force that produces a permanent alteration of shape is called the elastic 
limit of the material. 

Hooke's Law. You may remember that the spring scale in Section 
11.1 had the marks for equal force increments at almost equal intervals 
(Fig. 11.9). This experimental result suggests that the spring can be de-
scribed by the mathematical model of Eq. 11.8, in which the force ap-
plied to produce a deformation of distance ∆s from the equilibrium con-
figuration is proportional to the distance as shown in Fig. 11.23. Robert 
Hooke observed this property of many elastic bodies in the seventeenth 
century and proposed Eq. 11.8 for their description. The formula is 
therefore called Hooke's Law. The constant ĸ (Greek "kappa") in the 
formula is called the force constant and depends on the material and 
shape of the elastic body. 

 

Figure 11.23  Definition of ∆s, the deformation distance of the movable end of 
a spring, for three different spring shapes. 
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 According to Hooke's law, the deformation returns to zero when the 
force on the elastic body is removed; that is, the body springs back 
completely. This model, therefore, clearly does not apply to bodies that 
are stressed beyond the elastic limit, for these do not spring back com-
pletely. The model also does not apply to rubber bands, as you can ver-
ify by trying to provide a rubber band with a calibrated scale in the way 
we did for the standard spring scale. The scale marks do not fall at 
equal intervals. In spite of its limitations, Hooke's law is extremely use-
ful because it applies to many examples and is so simple (Table 11.2 
and Fig. 11.24). 

Elastic energy. Hooke's law enables us to derive a mathematical 
model for the elastic energy stored in a deformed body. The natural ref-
erence state (zero elastic energy) is the undeformed state. We need only 
calculate the work that is done by the force that deforms the elastic  
TABLE 11.2 ELASTIC FORCE OF A BOW 
 Displacement      Force* Force**  
 (∆s, meters) (|F|, newtons) (|F|, newtons) 
 0.000 0 0  
 0.025 10 7  
 0.055 20 15  
 0.14 40 38  
 0.24 60 65 

* Experimental data (using apparatus shown in margin to left). 
** Calculated from Hooke's law: |F| = 270 ∆s (with κ = 270 newtons 
per meter). 

Robert Hooke (1635-1703) 
became Robert Boyle's assistant 
after study at Oxford. In 1662, 
he became curator of 
experiments to The Royal 
Society and professor of 
geometry at Gresham College. 
Like many men of great ability, 
Hooke tended to become 
involved with too many things 
and thus found it difficult to 
finish anything. Nevertheless, 
he made a number of 
substantial contributions to 
science. He was an early 
exponent of the wave theory of 
light and was recognized by 
Newton as having been among 
the first to suggest the law of 
gravitation. In making 
observations of the structure of 
cork with microscopes he built, 
Hooke was the first to use the 
word "cell." Hooke is, however, 
best remembered for his law 
governing the compression and 
extension of elastic systems. 

Figure 11.24  Graph of the data for the elastic force of a bow (Table 11.2, 
below). The dots connected by the solid, curved line represent the experimental 
data. The straight (dashed) line is calculated from Hooke's law (|F| = 270∆s). 
The relatively small discrepancy between the solid and dashed lines 
demonstrates that Hooke's law describes the performance of  this bow quite well.
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body to a distance ∆s, because this work is equal to the stored elastic 
energy (Eq. 11.9). We therefore would like to combine the mathemati-
cal model for work (Eq. 11.5) with Hooke's law (Eq. 11.8). Unfortu-
nately, these two cannot be combined readily because the elastic force 
varies proportionally to the deformation, but the problem can be solved 
approximately (Example 11.3). The elastic energy stored in the de-
formed body varies as the second power of the displacement: doubling 
the displacement stores four times the energy, tripling the displacement 
stores nine times the energy, and so on (Example 11.4). 

 
EXAMPLE 11.3. Construct a mathematical model for the elastic en-

ergy of a system described by Hooke's law. Use Eqs. 11.5, 11.8, and 
11.9. 

 
Solution: Hooke's law, Eq. 11.8 gives the magnitude of the force that 

deforms the elastic body. This force varies from zero to a maximum 
value of κ∆s when the body is deformed. As an approximation, de-
scribe the force by a constant "average" value, halfway between the 
minimum and the maximum, 

|F| ≈ ½ к ∆s (1) 
The displacement of the end of the spring on which the force acts is 

parallel to the force (Fig. 11.23). Hence the displacement component is 
equal to the deformation distance, 
∆sF = ∆s (2) 
The mathematical model for the elastic energy is found by using these 

results in Eq. 11.9: 
E = W = |F| ∆sF ≈ (½ к ∆s)∆s = ½ к (∆s)2     (3) 
 
EXAMPLE 11.4. Calculation of the elastic energy of a bow using the 

value of κ in Table 11.2 (270 newtons per meter) and the formula de-
rived in Example 11.3. 
E =  ½ к (∆s)2  =  ½ x 270(∆s)2 = 135 (∆s)2 
 Displacement     Energy  
 (m)    (joules) 
 0.00 0.0  
 0.05 0.34  
 0.10 1.4  
 0.15 3.0 

11.7 Elastic energy and the MIP model for matter 
Let us now return to consider elastic energy and ask the question, 

what happens to the energy when a system is deformed beyond the 
elastic limit? Clearly, the energy that was transferred to the system will 
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not be simply returned to the environment because the system does not 
spring back completely. You can easily do an experiment with a paper 
clip (especially a 2-inch-long one), bending it rapidly back and forth 
(beyond the elastic limit) and touching the bent portion with your finger 
or above your upper lip to observe its temperature. It gets quite warm! 
You conclude that at least some of the energy becomes thermal energy. 
The same thing happens when the sidewall of an automobile tire, par-
ticularly an under-inflated one, is repeatedly flexed as the tire turns. It 
gets quite hot! 

MIP model for an elastic system. To obtain an understanding of how 
elastic energy is transformed into thermal energy, we make an MIP 
model for elastic systems. We know that particles in solid materials are 
in a more or less regular arrangement that depends on the crystalline 
structure of the material. The electrons and nuclei of adjacent particles 
interact with one another via an electric field in such a way as to main-
tain the shape of the entire piece of material. The particles are in an 
equilibrium arrangement relative to one another, and are spaced at cer-
tain equilibrium distances from one another. 

Now, if we bend, stretch or compress the material and thus change its 
shape, we are also changing the inter-particle distances and the micro-
domain electric field. Figure 11.25 shows four arrangements of a sys-
tem of 25 particles schematically. Elastic energy is stored in the electric 
field of the deformed arrangement. This energy is released by the sys-
tem when the specimen is permitted to spring back to equilibrium. In 

Figure 11.25 MIP model for an elastic specimen of 25 particles, (a) The 
specimen is unstressed, (b) The specimen is extended, (c) The specimen is 
compressed, (d) The specimen is bent. 

Figure 11.26 An elastic 
specimen is bent beyond the 
elastic limit.  
(a) Particle arrangement before 
elastic energy is lost, 
 (b) Particle arrangement after 
elastic energy is lost. 
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other words, what we call elastic energy in the macro domain is, ac-
cording to this model, stored in micro-domain electric fields. 

Elastic energy loss. Let us now consider what is likely to happen 
when the specimen is bent so far that it remains deformed (Fig. 11.26). 
Some particles are so very far apart that others from adjacent rows are 
attracted into the intervening spaces. This means that the particles can 
move toward a new equilibrium arrangement (Fig. 11.26b), which is 
compatible with a bent shape. As the particles move toward their new 
equilibrium positions, they gain kinetic energy at the expense of the 
electric field energy. Through collisions among the particles, the kinetic 
energy is shared among many of them, so that the specimen comes to a 
higher temperature in a macro-domain description (Section 10.5). This 
is a theory to explain why the paper clip gets hot. 

Elastic versus chemical and phase energies. The situation we have 
here, where elastic energy is stored in micro-domain electric fields, is 
similar to the earlier example of chemical and phase changes, where 
energy was also gained by or lost from micro-domain electric fields. 
The major difference is that the particle displacements in an elastic de-
formation are so correlated among all the particles that the macro-
domain shape of the entire system is altered: it is stretched, com-
pressed, or bent. Therefore the elastic energy can be transferred by the 
elastic forces doing work in the macro domain, as when the elastic en-
ergy stored in the longbow is transferred to kinetic energy of the arrow. 
During a phase change, however, the displacements of the various par-
ticles are not correlated so as to produce a net displacement or work in 
the macro domain. The energy released during a phase change is there-
fore transferred to (or from) micro-domain kinetic energy, that is, 
macro-domain thermal energy. 

The MIP model for "rigid" bodies. So far we have described elastic 
systems, such as springs, longbows, and fishing rods, which can be 
given large, easily visible deformations. The MIP model, however, 
leads you to expect that all solids would exhibit elastic behavior, even 
though the magnitude of the deformation may be very small if the in-
teractions holding the particles in their equilibrium arrangement are 
very strong. Fortunately, indirect evidence of elasticity is furnished by 
many observations, for example, a glass marble bouncing on a steel 
plate (Fig. 11.27) or a drinking glass bouncing on a wood floor. 

The bouncing of the glass marble and of other "rigid" bodies will 
make you aware that all rigid bodies are really elastic, can suffer de-
formation, and can store elastic energy. Thus, when the micro-domain 
particles are slightly displaced from their equilibrium arrangement, 
work is done and energy is stored; this energy is released when the par-
ticles spring back after the external stresses are removed. This fact is 
usually not appreciated because the elastic displacements under ordi-
nary conditions are too small to be detected. All evidence, however, 
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indicates that the elastic deformation and the elastic force of so-called 
rigid bodies are related by Hooke's law (Eq. 11.8), just as they are for 
springs, diving boards, and other objects that suffer visible elastic de-
formations. The MIP model for rigid bodies and their elasticity also 
helps to explain how it is possible for sound waves to propagate 
through such bodies (Section 7.1). 

11.8 Frictional force 
We have already had occasion to refer to frictional interactions and 

the force of friction on several occasions. The interaction of the fireman 
with the brass pole was the most recent example. Others are the 

Figure 11.27 A glass marble is dropped and hits a steel plate,  
(a) The marble just before impact. The gravitational field energy of the 
elevated marble-earth system has been transferred to kinetic energy, 
 (b) The marble at impact. The gravitational field energy is zero, and the 
kinetic energy is zero. Where is the energy of the system? 

Figure 11.28 Friction 
between the hand and the 
brass pole. 
 (a) The hand slides 
downward relative to the 
pole. The force of friction 
on the hand is directed 
upward and thereby 
opposes this motion, 
 (b) The pole slides upward 
relative to the hand. The 
force of friction on the pole 
is directed downward and 
thereby opposes this 
motion. 
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interaction of your shoes with the floor while you walk, the interaction 
of an eraser with the paper on which it is used, and even the interaction 
of the archer's fingers with the arrow when he is ready to shoot. 

Properties of friction. Friction occurs when two surfaces are in con-
tact. The frictional force opposes relative motion of the two surfaces. 
When two pieces of sandpaper are rubbed on one another, the interlock-
ing of irregularities on the two surfaces clearly causes friction. Why do 
even very smooth surfaces give rise to friction when the two surfaces 
are pressed together? Later we will describe a theory of friction that 
answers this question. 

Friction between the fireman's hand and the brass pole, like other in-
teractions, is described by two forces, one exerted on the hand, the 
other on the pole (Fig. 11.28). The direction of each frictional force is 
such as to drag the other surface along with it and to reduce relative 
motion of the two surfaces. Its magnitude is determined by the condi-
tion of the surfaces and the tightness with which they are pressed to-
gether. In one simple and fairly successful mathematical model for fric-
tion, the magnitudes of the frictional forces are directly proportional to 
the force pressing the two surfaces together. 

Whether or not the two surfaces actually are displaced relative to one 
another depends on the magnitude of the frictional force in relation to 
the other forces that are acting. If the frictional forces on the hands of 
the fireman are equal to the force of gravity acting on him, he will be in 
mechanical equilibrium and will not slide down. If he slightly relaxes 
his hold and thereby decreases the frictional force, he will slide. The 
same is true of an eraser interacting with a piece of paper. Pressed 
lightly, the frictional force is small and the eraser glides over the paper 
easily. Pressed very heavily, the paper may tear and move along with 
the eraser because the frictional force is larger than the forces holding 
the paper fibers together. 

Energy transfer by friction. If the two interacting surfaces are not 
displaced relative to one another, the frictional forces do no work. 
When there is some sliding, however, the frictional force acts on a body 
that is being displaced and work is done. According to the definition of 
work in Eq. 11.5, the work done is equal to the force of friction times 
the relative displacement of the two surfaces. 

What happens to the energy? From your experience of rubbing your 
hands together on a cold day, you know that thermal energy is produced 
in the interacting objects, which may be your two hands, the fireman's 
hands and the brass pole, the eraser and the piece of paper, and so on. 
In the example of the eraser and the piece of paper, eraser crumbs are 
produced and the paper tends to be worn thin; here the shape of the in-
teracting objects is also being changed, which requires some energy. 
The same is true when sandpaper is rubbed on wood or a grindstone is 
used to sharpen a knife. 

A theory of friction. As a matter of fact, energy transfer during fric-
tion can be explained by the use of the same MIP model that we 
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introduced to explain elasticity. In the micro domain all surfaces have 
irregularities. When two surfaces slide over one another, very strong 
interactions occur at the interlocking irregularities (Fig. 11.29). The 
irregularities are stressed beyond their elastic limit and are deformed, 
with the production of thermal energy as explained in Section 11.7. 

Applications. The effects of friction are often undesirable. Friction 
increases the energy necessary to operate machinery, and it causes wear 
of the moving parts. To reduce this waste, we use wheels and ball bear-
ings and/or lubricants to minimize friction. Wheels and ball bearings 
roll rather than slide, whereas lubricants form a film between the inter-
acting surfaces and prevent their irregularities from interlocking. 

In many circumstances, however, friction is very desirable. When 
walking, driving a car (not on ice!), tying shoelaces, and holding a 
drinking glass, friction is indispensable in that it prevents relative mo-
tion of the interacting surfaces. The same is true of thread in fabric and 
nails that hold boards together. Under other conditions, frictional forces 
are used to do work to achieve energy transfer. For example, when you 
press on the brake pedal of a car, the brake shoe presses against the 
brake drum (or disc), and the kinetic energy of an automobile is trans-
ferred to the thermal energy of the brake linings, or when an orbiting 
spacecraft must be slowed down to return to earth, friction with the air 
converts the kinetic energy of the craft to thermal and phase energy of 
the heat shield. 

Friction in liquids and gases. So far we have described friction be-
tween solid surfaces. Liquids and gases also exhibit friction in that rela-
tive motion of their parts is opposed by interactions among those parts. 
When water in a bowl is stirred near the edge, soon all the water in the 
bowl is rotating. Honey, though a liquid, is almost impossible to stir. 
Friction in liquids is called viscosity. Honey has high viscosity, water 
has low viscosity. Lubricating oils must have enough viscosity so they 
are not squeezed out completely from between the surfaces they are to 
lubricate. 

Gases, too, have viscosity, although much less than liquids. Gases, 
therefore, make excellent lubricants, but they must be continually sup-

Figure 11.29 
Micro-domain 
irregularities 
interlock and 
thereby bring 
about the forces of 
friction opposing 
relative motion. 
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plied to the lubricated surfaces because they escape rapidly. Even 
though air has very low viscosity, its motion past the surface of a plane 
flying at supersonic speeds or of a reentering spacecraft creates a great 
deal of frictional drag. Special materials must be used to withstand the 
high temperatures produced by the high rate of production (through 
friction) of thermal energy at an airplane's surface. 

Summary 
The central concept around which this chapter revolved is the Newto-

nian force. Instead of stressing the mutuality of the interaction among 
the objects in a system, Newton selected the objects' motions for de-
tailed study one at a time. In Newton's theory, a net force acts on every 
body whose motion is changing. For Newton, the net force was the 
cause of the change in motion. A body in steady motion in a straight 
line is subject to a zero net force; such a body is said to be in mechani-
cal equilibrium. 

The net force acting on an object in a complex system is the sum of 
partial forces exerted on it by each of the other objects in the system. 
Each of these partial forces is assumed to be affected neither by the 
presence of the other objects nor by the other partial forces. A body in 
mechanical equilibrium may be subject to no interaction at all, or (more 
likely) it is subject to a set of partial forces that compensate for one an-
other. No body ever exerts a force on itself. 

Four kinds of forces were explained in some detail: the gravitational 
force, the electric force, the elastic force, and the frictional force. A 
numerical measure of force, which is described by a magnitude and a 
direction in space, is obtained with a spring scale calibrated in newtons. 
The gravitational force on a body is of special importance for all dwell-
ers on the earth. Near the earth's surface it is described by the mathe-
matical model in Eq. 11.4. Its direction is vertical and its magnitude is 
very close to 10 newtons per kilogram of gravitational mass of the 
body, regardless of the body's other properties. 

Eq. 11.5 defines the work done by a force acting on a moving body. It 
is equal to the magnitude of the force times the moving body's dis-
placement component along the force direction. The work is the energy 
transferred by the action of the force. When a body falls freely, for in-
stance, the work done by the gravitational force transfers gravitational 
field energy to kinetic energy. Work done in the elastic deformation of a 
solid body is stored as elastic energy. Work done by the frictional force 
produces thermal energy at the surface where friction occurs. 

List of new terms 
force        gravitational intensity          elastic limit  
net force    work     force constant  
spring balance          elasticity            friction  
newton 

Equation 11.4 (force of 
gravity) 
 
force of gravity (newtons) 
  = FG  
gravitational mass(kg) 
  = MG 
gravitational intensity  
 (newtons/kg) = g 
 
 FG = g MG  
 
Near surface of earth:  
 g = 10 newtons/kg, and 
 FG = 10MG (downward). 
 
Equation 11.5 (Work) 
 
work (joules) = W 
force magnitude  
 (newtons) = |F| 
displacement  
 component in force  
 direction (m) = ∆sF 
 
 W = |F| ∆sF 
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List of symbols 
F force R distance (between charges) 
FG force of gravity     к force constant 
g  gravitational intensity          MG gravitational mass 
W work   h height above reference 
∆sF displacement component    level 
  in the force direction         EG gravitational energy  
q electric charge 

Problems 
1. Identify four examples of forces (elastic, gravitational, pressure, or 

frictional) in Fig. 11.1 in addition to the ones listed in the caption. 

2. (a) Give two examples from everyday life of bodies that are in me-
chanical equilibrium relative to one reference frame and are being 
accelerated relative to another. 
(b) Describe the partial forces acting on the bodies in your examples. 
(c) Relate the partial forces (qualitatively) to the net force in each 
reference frame. 

3. Comment on the assumption that the interaction between two bodies 
is unaffected by the nearby presence of a third, according to New-
ton's theory, as follows. 
(a) Do you find this assumption reasonable on the basis of your ex-
perience with inanimate objects? 
(b) Do you find this assumption applicable to human social interac-
tions? 

4. Enumerate the partial forces acting on each of these objects in Fig. 
11.1:  
(a) the fisherman's left boot;  
(b) falling apple;  
(c) tip of the fishing rod. 

5. Draw an approximate force diagram for all the partial forces acting 
on one of the objects in Problem 4. 

6. Measure the spring extensions produced by various numbers of 
weights in Fig. 11.9 and draw a graph relating these two variable fac-
tors (extension and number of weights). 

7. (a) Use a rubber band to make a "spring" scale (not necessarily cali-
brated in newtons). 
(b) Measure the rubber band extensions produced by various num-
bers of weights as you calibrate the rubber band scale. 
(c) Draw a graph relating the two variable factors in (b). 
(d) Is the rubber band described by Hooke's law? 
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 8. Describe how the operation of a spring scale may be affected by the 
force of gravity acting on the elastic system in the spring scale itself. 

9. Imagine the spring scale in Fig. 11.10 to be connected to the mouse's 
harness instead of to the wagon. What reading would you expect it to 
show? Explain your answer. 

10. (a) At what stage of the child's swing would you expect the spring 
scale reading in Fig. 11.11b to be largest? Explain.  
(b) At what stage would you expect the spring scale reading in Fig. 
11.11b to be smallest? Explain. 

11. Make an analogy between the spring scale and a thermometer. Dis-
cuss this analogy, using gravitational field energy as the analogue of 
thermal energy. What are the analogues of temperature and specific 
heat? Discuss this analogy critically. 

12. Use a spring scale (bathroom scale with 1 pound equal to 4.5 new-
tons) to estimate the net force on yourself under the conditions in 
your bathroom, and then in an elevator while it is  
(a) starting upward;  
(b) coming to a stop on its way up; and  
(c) moving uniformly. Describe and discuss your observations. 

13. Calculate the reading on your bathroom scale if you were to weigh 
yourself (a) on the surface of the sun and (b) on the surface of the 
moon. (See Table 11.1.) 

14. Propose one or more operational definitions of "work." 

15. Calculate the work that is done when a 90 kilogram fireman slides 3 
meters down a brass pole. 

16. Calculate the gravitational field energies of skiers X and W in Fig. 
11.20. 

17. Calculate the gravitational field energy of the fireman-earth system 
(Fig. 11.20) when the fireman is in the firehouse cellar, 1.8 meters 
below ground floor level. 

18. Describe how you might expect the mathematical model in Eq. 11.6 
to fail for objects A and C in Fig. 11.21. 

19. Your hands do work when they knead a piece of clay or dough. What 
happens to the energy transferred in this process? 

20. Test a diving board to determine whether Hooke's Law describes its 
deformation. Use people as weights in this experiment. Find the 
force constant if the diving board satisfies Hooke's law. 
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21. Find an elastic system that is described by Hooke's law. 
(a) Measure the deformation displacement and the elastic force, plot 
a graph of these two variables, and determine the force constant. 
(b) Calculate the elastic energy and plot a graph of its relation to the 
deformation displacement. 

22. Carry out the experiment with the paper clip described in Section 
11.7. Describe and compare the effect you observe with paper clips 
of various sizes, shapes and materials. 

23. Describe four everyday observations that give evidence that "rigid" 
bodies are really elastic systems. 

24. Use your rubber band scale (Problem 7) to estimate the force of 
friction between a piece of paper and a smooth surface when various 
loads are placed on the paper (Fig. 11.30). 

(a) Plot a graph to show the relationship between the force of friction 
and the force of gravity acting on the load, for two different surfaces. 

(b) Make approximate mathematical models in algebraic form for the 
graphs in (a), if possible.  

25. The Niagara Falls have a height of 50 meters. Estimate the maxi-
mum temperature rise in the water as gravitational field energy is 
converted to thermal energy at the Falls. 

26. Interview four or more children (ages 8-12) to find their explanations 
for the temperature rise produced by rubbing your hands together. 

Figure 11.30  Rubber band "spring" scale is used to measure the frictional 
force exerted by the table surface on the piece of paper (Problem 24). 
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27. Find the partial force exerted by the rope tow on each of the skiers in 

Fig. 11.20. Assume that the frictional force acting on the skis is neg-
ligible. (Hint: The snow exerts a force at right angles to the skis if 
there is no friction.) 

28. Identify one or more explanations or discussions in this chapter that 
you find inadequate. Describe the general reasons for your judgment 
(conclusions contradict your ideas, steps in the reasoning have been 
omitted, words or phrases are meaningless, equations are hard to fol-
low, . . .), and make your criticism as specific as you can. 
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