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Galileo was the first student of nature to observe and describe care-
fully the motion of objects, including falling bodies. He recorded their 
speeds and the changes in speed that occurred when they fell (increas-
ing speed) or encountered resistance to motion (decreasing speed). 
Galileo also realized that the direction of motion was of great signifi-
cance. For instance, projectiles tend to curve downward, but they main-
tain their motion in the horizontal direction even while they first rise 
higher, level off, and finally arch down to the ground. 

When we defined the speed of relative motion in Eq. 2.1, we referred 
only to the distance traveled, not to its direction. In this chapter, there-
fore, we will introduce a new concept, the velocity of a moving object, 
which takes into account the direction of motion as well as the speed. 
Like position, displacement, and force, velocity will be denoted by a 
boldface letter in the text (s, ∆s, F, v) and by an arrow in a diagram. 
The operations of arithmetic apply to velocity in the same way as to 
displacements (Section 2.3). 

Physical quantities, such as displacement and velocity, which must be 
described by both a numerical magnitude and a direction in space are 
examples of a class of mathematical quantities called vectors. To help 
you recognize and manipulate vectors, we are listing all the ones used 
in this text in Table 13.1. The table includes the algebraic and dia-
grammatic symbols, the algebraic symbol for the magnitude, and the 
text section where the quantity is defined. Note the arrows with a vari-
ety of heads to suggest close relationships among the quantities. When 
you are writing by hand, the boldface notation cannot be used; instead,
the algebraic symbol for a vector is written with an arrow over it ( vG ) to
remind the reader of the directionality. Because the word "vector" is not 
in common use, we will not use it further in this text, and we will refer 
directly to magnitude and direction whenever these are important. 
Other physics books generally use the vector terminology. 

13.1 Velocity 
The two words "speed" and "velocity" are commonly used as syno-

nyms to describe the rate of relative motion in everyday language. 
However, relative motion, if you wish to specify it adequately, includes 
two distinct ideas: 1) the numerical rate of speed and 2) the direction of 
motion. Therefore, in physics, the words “speed” and “velocity” have 
very specific meanings: we will use the word speed to describe only the 
numerical rate of relative motion (Section 2.2), as might be indicated 
on an automobile speedometer or an anemometer (a wind speed meas-
uring device). On the other hand, the word velocity includes both the 
rate and the direction of relative motion, for example "The wind veloc-
ity is 30 miles per hour from the northwest." The phrase "from the 
north-west" in this statement indicates the wind direction, while the 
phrase "30 miles per hour" indicates the wind speed. Thus velocity in-
cludes both the simpler numerical idea of speed and the direction; we 
can say that the velocity concept is inclusive of and more complex than 
the speed concept.  
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There are good reasons that the distinction between velocity and 
speed has not become part of everyday language. The movement of 
persons, animals, and vehicles on the ground is usually confined to 
roads or paths that are easily identified. Once the path of motion is de-
termined, its direction is known and only the speed of motion and its 
sense (forward or backward) need to be communicated. 

However, most objects (for example, children in a playground, boats, 
airplanes...) can move in a wide range of directions; therefore, both the 
speed and the direction of motion relative to the earth (or some other 
reference frame) are important. Therefore, to describe the motion of 
such objects, we must use the more complex concept of velocity rather 
than the simpler numerical notion of speed. 

Consider, for instance, the problem faced by the navigator of a ship, 
who can observe the velocity (speed and direction) of the ship relative 
to the ocean water and who knows that the ship is in an ocean current 
whose velocity (speed and direction) relative to the earth’s land masses 
has been charted. To reach his destination, he has to use the available 
information to compute the velocity (speed and direction) of the ship 
relative to the land masses. You face a similar problem when you try to 
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paddle a canoe past a boulder in a swiftly moving stream. Only the ve-
locity (speed and direction) of the canoe relative to the water is subject 
to your control; the velocity (speed and direction) of the water relative 
to the boulder is outside your control. Yet whether or not you hit the 
boulder depends only on the canoe's velocity (speed and direction) rela-
tive to the boulder, and this velocity is the result of adding together the 
other two velocities. 

Average velocity. We will now present a formal definition of the aver-
age velocity of a moving object during a time interval. The average 
velocity (vav) is defined in terms of the duration of the time interval and 
the moving object's displacement during the time interval (Eq. 13.1). 
The definition is similar to that of speed (Eq. 2.1), but involves the dis-
placement instead of the total distance traveled. 

The average velocity describes only what is known about the motion 
of an object from two "snapshots" giving its position at the beginning 
and the end of the time interval ∆t (Fig. 13.1). The snapshots give no 
information about what happened during the time interval: they do not 
reveal whether the object moved on a straight line between the two po-
sitions, or whether it made a larger detour (Fig. 13.2). An extreme case 
is that of a child on a merry-go-round, which may appear in the same 
position at the beginning and end of the interval, yet have traveled in a 
large circle on the merry-go-round (Fig. 13.3). According to the defini-
tion, its average velocity during the entire interval was zero because its 
displacement was zero. The average speed, however, was not equal to 
zero, since the child traveled all around a circular path of perhaps 100 
feet in length. 

The average velocity therefore may provide an inaccurate account of 
an object’s motion. You can avoid this problem by using a sufficiently 
short time interval and defining a new quantity: the instantaneous ve-
locity. 

Instantaneous velocity. To have a better description of the motion of 
the object, you must take snapshots or otherwise record its position 
more frequently. In fact, the position should be recorded so frequently 

FORMAL DEFINITION 
The average velocity is the 
ratio of the displacement 
divided by the time interval 
required for the 
displacement. 

Figure 13.2 Alternate paths may result in the same 
displacement even though different distances are 
traversed. The magnitude of the displacement is equal 
to the actual distance traversed only if the actual path 
is along the straight line. 

Figure 13.3  Displacement in a 
complete circle is the same as zero 
displacement. ∆s=[0,0]. Of course, the 
total distance traveled is not zero. 
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that you can be sure no excursions or other irregular behavior had oc-
curred between the recorded positions. Then the average velocity in 
each time interval, as defined by Eq. 13.1, would describe the actual 
motion of the object very accurately. When Eq. 13.1 is used with such a 
very short (infinitesimal) time interval, it defines the instantaneous ve-
locity v (Eq. 13.2); the word "instantaneous," meaning over a "vanish-
ingly small" or "infinitesimal" interval, emphasizes the distinction with 
the "average" velocity. Instantaneous velocity is a concept that is ex-
tremely useful for making mathematical models, but only the average
  

 

Figure 13.4 Two golf balls 
were released at the same 
time and then photographed 
at intervals of 1/30 second.  
 
Scale: The black horizontal 
lines are 15 cm, or 0.15 m, 
apart. Thus each square in 
the grid is 0.075 m on a side 
and the actual distances 
between the positions of the 
balls can be found by simply 
estimating the position of 
each image in relation to the 
grid. For example, the bottom 
of ball image A9 is at about 
[0.0, -6.0] squares and the 
bottom of ball image A10 is 
at about [0.0, -7.4] squares. 
Therefore, the displacement 
of ball A in interval 9-10 is  
∆s = [0.0, -1.4] squares  
= [0.0, -1.4 sq.](0.075 m/sq) 
= [0.0, -0.105] m. 
This agrees quite well with 
the vertical (y) displacement 
of ball B in interval 9-10 
found in Table 13.2. 

TABLE 13.2 ANALYSIS OF GOLF BALL MOTION, FIGURE 13.4 
Pictures defining ∆t ∆s vav  
 interval (sec) (m) (m/sec) 
 
 4-5 0.033 [0.067, -0.048] v5  = [2.00, -1.4] 
 9-10 0.033 [0.067, -0.106] v10 = [2.00, -3.2] 
 13-14 0.033 [0.067, -0.15] v14 = [2.00, -4.5] 
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velocity can be found experimentally from measurements of displace-
ments and time intervals. As we have mentioned, you can find as close 
an approximation as you wish to the instantaneous velocity by measur-
ing the average velocity over successively shorter time intervals. Using 
a very short time interval also means that the difference between the 
magnitude of the displacement and the distance traveled (Fig. 3.2) can 
be made as small as necessary; therefore, the magnitude of the velocity 
and the speed will also converge to the same value. 

An example. We will analyze the familiar and important motion of a 
freely falling object (Fig. 13.4). We will show that the horizontal com-
ponent of the velocity stays the same and only the vertical component 
changes, a result that we will refer to again in Chapter 14. Two tech-
niques for determining the positions of a moving object at closely 
spaced time intervals were described in Section 2.2: motion pictures  
and multiple exposure photographs. Fig. 13.4 is a multiple exposure of 
two golf balls released at the same time from the mechanism at the top. 
Ball A was allowed to fall straight down, and ball B was shot out hori-
zontally with an initial speed of 2.00 meters per second. The camera 
shutter remained open while short flashes of light illuminated the balls 
at intervals of 1/30 second. The black lines are horizontal strings placed 
15 centimeters apart. A rectangular coordinate grid (as introduced by 
Descartes, Chapter 2) is shown by which you can actually measure the 
rectangular components of the displacement of each ball for each inter-
val. You can then use this information to find the average velocity of 
each ball for each interval between pictures. 

Three sample calculations of the average velocities of ball B are pre-
sented in Table 13.2. The average velocity in the fifth interval is called 
v5, the average velocity in the tenth interval is v10, and so on. You see 
that the x-component (horizontal) of the velocity does not appear to 
change, but that the y-component (vertical) changes greatly. 

Figure 13.5 Average 
velocities v5 , v10 , and v14 of 
falling golf ball B in Fig. 
13.4. 

(∆t infinitesimal)

av t
=

∆

Equation 13.2

∆s
v = v

René Descartes (1596-
1650) was able to combine 
geometrical and 
arithmetical reasoning by 
identifying velocity 
components. He wrote: [the 
vertical component is]  ... 
"that part which would 
make the ball move from 
above downward ...." [and 
the horizontal component 
is] “... the tendency which 
made it move toward the 
right." 

Infinitesimal means 
exceedingly small or 
vanishingly small. But 
how do we know when the 
interval is short enough? 
In practical terms, we 
always want to know the 
velocity to a certain 
accuracy set by our 
measuring instruments. 
Therefore, to decide when 
the time interval is short 
enough to be considered 
infinitesimal, we can 
continue to take position 
measurements at shorter 
time intervals until the 
value of the velocity 
calculated from the 
formula stays constant to 
within the desired 
accuracy. 
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Figure 13.5 is a coordinate frame diagram to show the average veloci-
ties calculated in Table 13.2. The three arrows represent the velocities 
of ball B in the three intervals tabulated. This diagram gives a picture 
of the variation of the ball's average velocity with time. The velocity 
becomes progressively directed more and more strongly in the down-
ward direction. Since the golf ball did not execute irregular motion, you 
may imagine that the instantaneous velocity also changed smoothly and 
became progressively directed downward. The instantaneous velocity 
at the very beginning was 2.00 meters per second to the right, as de-
scribed in the conditions of the experiment. A good mathematical 
model for the golf ball motion is that the head of the arrow representing 
the instantaneous velocity begins at the point P and gradually rotates 
from the horizontal direction toward the vertical direction, with its tip 
always on the dashed line. 

Change of velocity. You can carry out arithmetic operations with ve-
locities just as you did with displacements. You must, however, re-
member the physical significance of these operations when they are 
applied as part of a mathematical model. We said above, for example, 
that the average velocity of the falling golf ball was changing. How 
much did it change between the fifth interval and the tenth interval 
(Fig. 13.4)? It changed by the arrow shown as ∆v in Fig. 13.6. This 
must be added to the velocity v5 in the earlier interval to result in the 
velocity v10 in the later interval. In other words, the change of velocity 
∆v is the difference between the two velocities. Note that the change of 
velocity has a magnitude and a direction and is represented by an arrow 
in the diagrams. In Fig. 13.6 the change of velocity is directed verti-
cally downward. 

The relation of the arrows in Fig. 13.6 can be stated also in the form 
of an equation. You can think of v10 as equal to the sum of v5 plus ∆v 
(Eq. 13.3), or you can think of ∆v as the difference between v10 and v5 
(Eq. 13.4). We pointed out in Chapter 3 that changes in motion are evi-
dence of interaction of the moving object with another object. There-
fore, the calculation of changes of velocity is important because it re-
veals the presence of interaction and helps us to identify the other ob-
jects that are the source of that interaction. For instance, the change of 
velocity of the falling golf ball is directed vertically downward because 
the force of gravity is directed vertically downward. The relation be-
tween change of velocity and force will be examined further in Chapter 
14. 

Finding the displacement. The relationship of average velocity, dis-
placement, and time interval (Eq. 13.1) can be used in two different 
ways. So far, we have used it to find the average velocity from data of 
the displacement and the time interval. In addition, the relationship can 
be reversed to permit calculation of the displacement, which is equal to 
the average velocity multiplied by the time interval (Eq. 13.5). 

This new relationship, a mathematical model for the displacement, is 
useful only while the average velocity is not changing greatly or when 
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the time interval is infinitesimal. It is similar to the example of the 
automobile trip described in Figure 1.8 except that now the direction of 
motion as well as the speed must be unchanging. 

Velocity versus speed. At the beginning of this section we pointed out 
that the velocity concept describes motion more completely than does 
the speed concept. Speed is the rate at which distance is traversed with-
out regard to direction. Speed and distance, therefore, are not repre-
sented by boldface symbols but by ordinary letters (Eq. 2.1). The aver-
age speed of the child on the merry-go-round (Fig. 13.3) is substantial 
because of the large distance traversed during one revolution, but the 
average velocity during one revolution is nevertheless zero. Whenever 
an object changes its direction of motion and moves along a curved or 
zigzag path, the average speed and the average velocity are not related 
simply to one another. Whenever motion is along a straight line and its 
direction does not change, the magnitude of the displacement is equal 
to the distance traversed (Eq. 13.6; see Fig. 13.2); hence, the magnitude 
of the average velocity is equal to the average speed (Eq. 13.7). 

This same relation of speed and velocity also holds in the limit of in-
finitesimal time intervals. In this limit we speak of the instantaneous 
speed (Eq. 2.2) and the instantaneous velocity (Eq. 13.2). The magni-
tude of the instantaneous velocity is equal to the instantaneous speed 
(Eq. 13.8). Basically, the reason behind this relationship is that the 
complications arising from changes in the direction of motion do not 
operate during an infinitesimal time interval. The automobile speed-
ometer, for instance, is designed to measure the instantaneous speed of 
a car. When you combine the speedometer reading with the direction of 
motion of your car (perhaps indicated on a magnetic compass mounted 
under the windshield), you obtain your car's instantaneous velocity 
(speed and direction). 

Before concluding this section, we should point out an example that 
clearly reveals the key difference between the concepts of speed and 
velocity. A car travels along a road at 60 miles per hour, slows 

 

Figure 13.6 Change of the 
average velocity of falling golf 
ball B in Fig. 13.4. 
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down and makes a U-turn, then accelerates to 60 miles per hour again. 
Its speed at the end is the same as at the beginning, 60 miles per hour. 
However, while its final velocity has the same magnitude as the initial 
velocity, they are pointing in opposite directions. Therefore, the change 
in velocity, illustrated in Fig. 13.7, has a magnitude of 120 miles per 
hour and points in the same direction as the final velocity! 

13.2 Acceleration 
Everyone who has been in a rapidly accelerating car or in a jet air-

plane has experienced the sensation of being pushed back into the seat 
during takeoff. When a high-speed elevator starts or stops, the passen-
gers sometimes experience feelings of nausea. The passengers in roller 
coasters and other rides at the amusement park are pressed into their 
seats or pushed from side to side. In all these happenings, the human 
body experiences changes of velocity (of speed or direction of motion, 
or of both) that affect the internal organs and may cause "seasickness." 

Acceleration is the quantity used to describe changes of velocity. The 
most common example is the speeding up of an automobile when the 
driver steps on the accelerator. Acceleration is therefore usually associ-
ated with an increase of speed. Newton's very successful theory, how-
ever, relates all changes of speed and direction of motion of objects to 
their interactions with other objects. As a result, we must formulate a 
definition of acceleration that is more general than everyday usage and 
that includes decrease of speed and changes in direction of motion as 
well as increase of speed. 

Definition of acceleration. It is immediately clear that the change in 
velocity is by itself not directly related to the strength of interaction. 
Compare, for instance, the car that accelerates to 60 miles per hour 

Figure 13.7 A car reverses its direction of motion from the left to the right. The 
change of velocity is 120 miles per hour to the right. 
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from a standing start in 10 seconds (with a roar of the engine and flying 
gravel), and the car that does the same in 1 minute with hardly any 
noise or notice by the passengers inside. Though the velocity change is 
the same (0 to 60 miles per hour), the interaction between the tires and 
the road (or the passengers and their seats) is much larger in the first 
case than in the second. The time interval during which the velocity 
change is accomplished appears to be significant and is included in the 
definition of acceleration. To pin down the time interval and the exact 
velocity change, the definition refers to the instantaneous and not the 
average velocity (Eq. 13.9). 

Examples. The definition of acceleration can be applied to golf ball B 
in Fig. 13.4 only in approximate fashion, because instantaneous veloci-
ties have not been determined. Nevertheless, the acceleration of golf 
ball B will serve as an illustration in Example 13.1 below. 

In Example 13.2 below we calculate the actual accelerations of the 
two automobiles mentioned above. The example of the car making the 
U-turn (Fig. 13.7) could be used to calculate an acceleration if the time 
interval ∆t required for the U-turn were known. If the U-turn is accom-
plished in a short time interval, the acceleration must be large, accord-
ing to Eq. 13.9. Physically, this is possible only on a road with good 
traction. On an icy pavement, the time interval would have to be long 
and the acceleration small. This shows that the maximum possible ac-
celeration is closely related to the interaction between tires and road. 

Another example of acceleration occurs when a car traveling west 
makes a left turn and goes south (Fig. 13.8 and Example 13.3). This 
situation may seem different from the ones above, because only the 
direction of motion changes, not the speed. Nevertheless, we can still 
find the change in velocity by considering the x- and y-components. 
The change in velocity needed is the velocity we must add to the initial 
velocity to end up with the final velocity. Therefore, the change in ve-
locity must point both east (to cancel the initial velocity) and south (to 
end up with the proper final velocity). As shown in Fig. 13.8b, the 
change of velocity, and therefore the acceleration, are at a 45-degree 
angle to the initial and final directions, pointing toward the inside of the 
curve. This conclusion is generally true: whenever an object travels in 
a curve, the acceleration points toward the inside of the curve. 

FORMAL DEFINITION 
The average acceleration is 
the ratio of the change of 
instantaneous velocity to 
the time interval required 
to effect the change. 

av

change in 
instantaneous 
velocity (m/sec)    = 
time interval (sec) = ∆t

∆t

Units of acceleration:

1 m/sec/sec = 1 meter per 
                       secon

=

Equation 13.9 
(definition of 
acceleration)

∆v

∆v
  a

d per 
                       second

1 mph/sec = 1 mile per 
                     hour per  
                     second
                 = 0.45 meter
                    per second 
                    per second

(Can you verify the above 
value, assuming that 
1 mile  1600 m?)≈

Figure 13.8 A car drives 
around a curve, (a) Top 
view of road, with car 
turning from westward to 
southward direction at 50 
miles per hour.  
(b) Velocity diagram, 
showing initial velocity vi , 
final velocity vf , and the 
velocity change ∆v of 70 
miles per hour to the 
southeast. 
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Some useful conver-
sions: 
 
a) 1 mile = 1600 me-
ters (approx.) 
 
b) 1 mile/hr (mph) = 
0.44 m/sec 
 
c) 1 m/sec = 2.25 mph 
 
Can you verify b) and 
c) by starting with a)? 
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Finally, consider the example of a car slowing down. A car traveling 

initially at 60 miles per hour coasts gradually, in 20 seconds, to a speed 
of 40 miles per hour on a straight road (as in Example 13.4, above). 
What is the acceleration? You may respond that the car is not acceler-
ated at all, that it is decelerated. This is true, in everyday language. The 
scientific definition of acceleration, however, refers to a velocity 
change and does not depend on whether the change represents an in-
crease or a decrease in speed. The acceleration of the coasting car is 
calculated in Example 13.4, above, and it comes out with a negative x-
component; this indicates that the acceleration is, in this case, directed 
in the opposite direction from the velocity, as expected for a decrease in 
speed.  

It is clear from all these examples that the scientific meaning of the 
word "acceleration" frequently does not correspond to the intuitive 
meaning of the word. For interpreting changes in velocity, the defini-
tion we have given (Equation 13.9) is more useful than the everyday 
meaning. These examples also show how to apply the scientific defini-
tion of acceleration for all the possible ways that the velocity can 
change. 

13.3 Momentum 
Changes in motion brought about by interaction during a rear-end col-

lision are a painful part of many people's experience. Imagine the cau-
tious driver waiting at a red light, who glances into his rearview mirror 
and sees a trailer-truck bearing down on his car from behind! Even 
though the truck is advancing quite slowly, our hero may grip his steer-
ing wheel in grim anticipation. By contrast, a light motorcycle or bicy-
cle seen in the same rearview mirror would hardly be a cause for alarm 
unless it was approaching at very high speed. 

This example illustrates that both speed and mass of a moving object 
influence its interaction with other objects upon collision. In Section 
3.4, we defined the inertial mass as a measure of a body's resistance to 
change in motion and the momentum as an important property of a 
moving body, equal to the product of the inertial mass and the speed 
(Eq. 3.1). We now redefine the momentum to assign it a direction in 
space as well as a magnitude by relating it not to the speed but to the 
velocity (Eq. 13.10). The direction of the momentum is defined to be 

FORMAL DEFINITION 
Momentum is the product 
of inertial mass multiplied 
by instantaneous velocity. 

( )
( / sec)

            

Units of momentum:
kg-m/sec = kilogram-
                   meters
                   per second

I

I

inertial mass kg M
velocity m
momentum

M

=
=
=

Equation 13.10

v

v

M

   M = 
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exactly the same as the direction of the velocity: the momentum arrow 
points in exactly the same direction as the velocity arrow. However, the 
two arrows are a different length because the momentum and the veloc-
ity have different magnitudes. In fact, as you would expect, the magni-
tude of the momentum is equal to the mass times the speed (the magni-
tude of the velocity). The momentum concept will be used to formulate 
Newton's theory of moving bodies in Chapter 14. 

Summary 
Relative position, displacement, velocity, acceleration, and momen-

tum are physical quantities that are described by a magnitude and a di-
rection in space. You must distinguish between the average and the in-
stantaneous velocity of a moving body. The average velocity, measured 
from observations of the path of the moving object, is equal to the dis-
placement divided by the time interval (Eq. 13.1). The instantaneous 
velocity is an extrapolation of the average velocity to a time interval 
that is so short (infinitesimal) that the velocity does not change. The 
velocity must also be distinguished from the speed, which is equal to 
the actual distance traveled divided by the time interval. 

The average acceleration is equal to the change of instantaneous ve-
locity divided by the time interval (Eq. 13.9). The momentum of a body 
is equal to the velocity multiplied by the inertial mass of the body (Eq. 
13.10). We will use the concepts of acceleration and momentum in the 
next chapter (Ch. 14) to formulate Newton's theory of moving bodies, 
which shows how the motion of an object is related to the forces on that 
object. 

List of new terms 
average velocity  
instantaneous velocity  
infinitesimal time interval 
average acceleration  
momentum 

List of symbols 
s position v instantaneous velocity  
∆s displacement v instantaneous speed  
∆s distance ∆v change of velocity  
∆t time interval aav average acceleration  
vav average velocity M momentum 
 
Note: Boldface symbols, such as s and v, represent quantities with both 
magnitude and direction. Such quantities are represented as arrows with 
a length (magnitude) pointing in a particular direction. Such quantities 
cannot be represented with a single number and must be expressed 
mathematically with rectangular (x, y) or polar (r, θ) coordinates. Rec-
tangular coordinates are often more convenient, especially in calcula-
tions where quantities such as displacements or velocities must be 
added and subtracted. 

av

av

I

t

t

M

∆

∆

Equation 13.1
(average velocity)

∆s
     v  =  

Equation 13.9
(definition of 
acceleration)

∆v
      a  =  

Equation 13.10
(definition of
momentum)

      vM = 
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Problems 
1. Formulate an operational definition for velocity. Compare your defi-

nition with the formal definition in Section 13.1. Discuss advantages 
and disadvantages of the formal and the operational definitions. 

2. Consider the child on the merry-go-round (Fig. 13.3) and suppose it 
moves in a circle with a radius of 6 meters. The merry-go-round 
takes 12 seconds to make one revolution. 
(a) Calculate the distance the child travels during one revolution. 
(b) Calculate the average speed of the child (ratio of actual distance 
traveled to time interval) during one full revolution. 
(c) Calculate the average velocity of the child during one half of a 
revolution. Note: find the magnitude and direction (using polar or 
rectangular coordinates) of the velocity in a coordinate frame with 
origin at the child's starting position. 
(d) Calculate the average velocity during: one quarter of a revolu-
tion; one sixth of a revolution; one twelfth of a revolution. (See note 
in (c).) 
(e) Plot a graph of the magnitude of the average velocity versus the 
time of the interval ∆t you used in questions (c) and (d). 
(f) Plot a graph of the direction (angle) of the average velocity ver-
sus the time of the interval ∆t you used in questions (c) and (d). 
(g) Estimate the instantaneous velocity of the child by extrapolating 
to an infinitesimal time interval (∆t = 0) in questions (e) and (f). 

3. Refer to Fig. 13.4 for this question. 
(a) Find the average velocity of golf ball A during the intervals be-
tween pictures 4 and 5, 9 and 10, and 13 and 14. Compare these av-
erage velocities with those of golf ball B recorded in Table 13.2. 
(b) Find the (approximate) average acceleration of golf ball A be-
tween the fifth and tenth intervals, and between the tenth and four-
teenth intervals. 
(c) Find the (approximate) average acceleration of golf ball B be-
tween the tenth and fourteenth intervals. Compare the accelerations 
you found in (b), (c), and in Example 13.1. 
(d) Discuss and estimate the extent to which the instantaneous ve-
locities of golf balls A and B in this experiment differ from the aver-
age velocities determined in part (a) and in Table 13.2. 

4. (a) Describe examples (beyond those included in Section 13.2) of 
situations where the human body easily senses changes of velocity. 
(b) Describe the body's response (if any) to motion at high velocity 
that is constant (does not change). Examples of this type of motion 
are an airplane or train traveling at constant speed in a straight line. 

5. Calculate the highest forward (speeding up) acceleration of which 
existing automobiles are capable. Include all the data on which you 
base your work. (Consult magazines, automobile dealers.) 

6. Estimate the highest acceleration of which automobiles are capable 
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when they come to an emergency stop (with the brakes slammed 
on). (Note: As explained in Section 13.2, acceleration is used to de-
note both increases and decreases in speed; the only condition is that 
the velocity changes.) State your estimate numerically. 

7. Estimate the acceleration of other vehicles (for example, jet aircraft 
on takeoff and landing, motorcycles, speedboats). Include all the 
data on which you base your work. State your estimates numerically. 

8. The velocity of a child on a merry-go-round (Fig. 13.3) is changing 
continually in direction. Make a rough quantitative estimate of the 
acceleration involved. If you did problem 2 above, you can use the 
results you found there for parts (d) through (g). 

9. Identify one or more explanations or discussions in this chapter that 
you find inadequate. Describe the general reasons for your judgment 
(conclusions contradict your ideas, steps in the reasoning have been 
omitted, words or phrases are meaningless, equations are hard to fol-
low, . . .), and make your criticism as specific as you can. 
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