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Have you ever wondered how extensively human civilization de-
pends on clocks? Western culture is especially time conscious, since 
daily schedules in the complex worlds of business, industry, and educa-
tion require synchronized cooperation by many individuals. Sometimes 
it seems as though clocks are the masters and humanity is enslaved! 

Clocks are instruments that make possible the operational definition 
of time intervals. Each clock has a regulating mechanism, such as a 
pendulum, a balance wheel, or a vibrating crystal, which moves in a 
repeating pattern (called periodic motion) and defines equal time inter-
vals, one after another. In this chapter, we will formulate a mathemati-
cal model for periodic motion and apply it to the solar system, the pen-
dulum, and the elastic oscillator. We will not be concerned with other 
aspects of clocks, such as their energy sources, the internal connections 
that regulate the movement, and the face or dial on which the elapsed 
time is indicated. 

Periodic motion also occurs under natural conditions in the macro 
domain. The child in her swing, the bird swaying gently on a tree 
branch, the bicycle wheel spinning on its axle, your arm swinging by 
your side as you walk—all these are examples of periodic motion from 
the everyday world. 

There are several sections in this text where we have already referred 
to periodic motion. In Section 1.5, the operational definition of time 
intervals was based on periodic motions such as the earth's revolution 
on its axis and the swinging of a pendulum. In Section 3.4, we intro-
duced the inertial balance, whose periodic motion is the basis for the 
operational definition of inertial mass. In Section 6.1, we introduced the 
oscillator model for a medium that permits wave propagation, and we 
described the periodic motion of each oscillator (Fig. 6.4). 

15.1 Properties of periodic motion 
Periodic motion can occur in a system only when the objects in the 

system interact with one another in such a way that they remain near 
one another. In the absence of interaction, the objects would move apart 
and not return to repeat their motion once they had passed each other. 
Even though systems carrying out periodic motion will eventually stop 
moving, they do have a stable existence over many cycles of their mo-
tion, as shown by the example of the solar system. 

In this chapter we will examine periodic motion from the viewpoint 
of the Newtonian theory. The two principal quantities that are used to 
describe periodic motion of a particle are the time required for one cy-
cle, which is called the period (T, seconds), and the radius or width of 
the orbit (R, meters). We will construct a mathematical model for peri-
odic motion and thereby relate the period and radius to the mass of the 
particle and the force that maintains the periodic motion. 

The qualitative nature of the relationship among period, radius, mass, 
and force is easy to infer. The moving particle has a velocity
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whose magnitude depends on the radius (distance traveled) and period 
(time required) of the orbit. Since the particle is moving back and forth, 
the velocity cannot be constant but must change, giving rise to an ac-
celeration. The acceleration is related to both the net force and inertial 
mass according to Newton's second law (Eq. 14.6, Fnet = MIa). As ex-
plained in Section 14.4, we can assume that the inertial mass of a parti-
cle is equal to its gravitational mass. Therefore, from now on we will 
refer to the mass without specifying it further; thus, a = Fnet/M. 

15.2 A mathematical model for circular motion 
Circular motion with a constant speed is a particularly simple exam-

ple of periodic motion. The moon in its orbit around the earth, the teth-
erball whirling at the end of its string, and the child on the merry-go-
round exemplify more or less closely this kind of periodic motion. The 
arrow representing the position of the moving particle in a diagram ro-
tates around the circle (Fig. 15.1). The acceleration in this example 
arises only from changes of direction of the instantaneous velocity, 
since the instantaneous speed (magnitude of the velocity) does not 
change (Section 13.2). To apply Newton's theory, we must first find 
how the acceleration is related to the radius and period. 

Figure 15.1 Circular motion with radius 
R and period T. In the time T, the arrow 
representing the relative position of the 
orbiting particle rotates once around the 
circle counterclockwise. 

Figure 15.2 Arrows representing 
the instantaneous velocity at five 
instants (A, B, C, D, E) during 
one orbital revolution. 

Figure 15.3 Diagram of the 
velocities at five instants dur-
ing one revolution of the orbit-
ing particle. Since the magni-
tude of the velocity is constant, 
the velocity arrows all extend 
from the origin to the dashed 
circle of radius |v|. 

Figure 15.4 The arrow rep-
resenting the acceleration 
is in the direction of the 
velocity change, which is to 
the left as the velocity ar-
row rotates around the cir-
cle counterclockwise. 
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Velocity of circular motion. The instantaneous velocity is directed 
along the circumference of the circular orbit, at right angles to the posi-
tion arrow (Fig. 15.2). The magnitude of the instantaneous velocity is 
equal to the instantaneous speed, and this, in turn, is equal to the aver-
age speed since the latter does not vary (Eq. 15.1). The average speed is 
equal to the circumference of the circular orbit divided by the period 
(Eq. 15.2, |v| = 2πR/T). 

It is instructive to make a diagram in which the instantaneous velocity 
arrows are compared (Fig. 15.3). The tails of all the arrows are placed 
at the origin of the coordinate frame and the heads of the arrows fall on 
the circle whose radius is the velocity magnitude given by Eqs. 15.1 
and 15.2. You can see that the velocity diagram (Fig. 15.3) is very simi-
lar to the position diagram (Fig. 15.1). One way of describing the circu-
lar motion is to say that both the position arrow and the velocity arrow 
rotate once around their circles during one period. 

Acceleration in circular motion. The easiest way to infer the direc-
tion and magnitude of the acceleration is to reason from the formal 
similarity of the relations "position-velocity" and "velocity-
acceleration." We have just pointed out that the geometry of the posi-
tion arrow, which rotates counterclockwise around a circle (radius R) in 
one period (Fig. 15.1), is analogous to the geometry of the velocity ar-
row, which also rotates counterclockwise around a circle (with radius 
|v|) in one period (Fig. 15.3). The magnitude of the acceleration is 
therefore given by a formula like Eq. 15.2, except using the radius of 
the velocity circle instead of the radius of the position circle (Eq. 15.3). 
In fact, the head of the velocity arrow travels around the circumference 
of a circle, a distance of 2πv; therefore, over the full circle a = ∆v/∆t =  
2πv/T. If you replace v with its value from Eq. 15.2 you find Eq. 15.4, 
in which the magnitude of the acceleration is directly proportional to 
the orbital radius and inversely proportional to the period raised to the 
second power. 

The direction of the acceleration can be found by using the analogy of 
the position circle in Fig. 15.2 to the velocity circle in Fig. 15.3. The 
velocity arrow in Fig. 15.2 points at right angles to the position arrow, 
and to the left. The acceleration implied by Fig. 15.3 is therefore di-
rected at right angles to the velocity, and to the left (Fig. 15.4). The po-
sition, velocity, and acceleration at instant A are summarized in Fig. 
15.5. You can see that the acceleration is directed from the

Figure 15.5 Comparison of the posi-
tion, velocity, and acceleration of a 
particle moving at uniform speed 
along a circular path. The tails of the 
velocity and acceleration arrows are 
placed at the position of the particle 
(A). The velocity points along the tan-
gent to the path; the acceleration 
points toward the center of the circle. 

Equation 15.1 
 
instantaneous  
 velocity = v 
instantaneous  
 speed    = v 
average speed = vav 

|v| = v = vav 
 
 Equation 15.2  (velocity 

of particle moving in a 
circle) 
 distance traveled = ∆s  
 time elapsed  = ∆t 
 orbital radius  = R 
 orbital period = T  

 2vav
s R
t

π∆= = =∆v T  

From here on we will 
merely  write "speed" 
and "velocity"for the in-
stantaneous quantities. 
The average quantities 
will be designated as 
such so you may identify 
them properly. 

Equation 15.3  

 acceleration  = a 

 
2π= va T  

Equation 15.4 (Accel-
eration of particle mov-
ing in a circle) 

 2 /2 Rππ § ·
¨ ¸¨ ¸
© ¹

=a T
T  

     
24 Rπ= 2T  
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point A toward the center of the circle, a result that also applies at any 
point on the circle (Fig. 15.3, B, C, . . .) . In his studies of circular 
planetary orbits, Newton therefore introduced the term centripetal ac-
celeration for the acceleration of any object moving in a circle at con-
stant speed. 

Centripetal force. When you use Newton's second law (Fnet = Ma) to 
calculate the force required to cause this acceleration (Eq. 15.5), you 
find that the magnitude of the force is constant and that it is always di-
rected toward the center of the circle. The force is therefore often called 
a centripetal force. The magnitude of the force is directly proportional 
to the mass of the particle and the radius of the circle; it is inversely 
proportional to the second power of the orbital period (Eq. 15.5). This 
equation is a mathematical model for the centripetal force during circu-
lar motion. The application of this model to a simple laboratory ex-
periment is described in Fig. 15.6. In the experiment, a weight hanging 
from a string supplies the centripetal force, which is transmitted by the 
string to the orbiting weight. 

15.3 The solar system and gravitation 
Newton applied the theory of circular motion and its extension for el-

liptical motion to the moon and the planets in the solar system. He used 
the observations of orbital motion to deduce the centripetal forces that 
were acting. He then identified these forces with the terrestrial force of 
gravity and thereby unified terrestrial and celestial phenomena. 

Newton took the point of view that the sun exerted the force that kept 
the planets in their orbits. Unlike his predecessors Copernicus, Kepler, 
and Galileo, Newton had a mathematical model relating force to motion 
(Fnet∆t = ∆M, or Fnet = Ma). This was a powerful method for testing 
whether the heliocentric point of view resulted in a simple explanation 
for the observations that had been made on the solar system. In particu-
lar, Newton invented a simple mathematical model for the force exerted 

2

force (newtons)      = 
mass (kg)               = M

    = M  
   (Newton's Second Law)

4      = 
     (from Eq. 15.4)

net

net
MRπ

F

F a

F
2T

Equation 15.5 (Centri -
petal force for motion 
in a circle)

"A centripetal force is that 
by which bodies are drawn 
or impelled, or any way 
tend, towards a point as a 
centre.... Of this sort is 
gravity, by which bodies 
tend to the centre of the 
earth; magnetism, by which 
iron tends to the lode-
stone; and that force, what-
ever it is, by which the 
planets are continually 
drawn aside from the recti-
linear (straight line) mo-
tions, which otherwise they 
would pursue, and made to 
revolve in curvilinear or-
bits." 
 Isaac Newton 
 Principia, 1687 

Figure 15.6  Weight X is twirled 
in a circle to hold weight Y in 
mechanical equilibrium. The 
centripetal force on weight X is 
equal in magnitude to the gravi-
tational force |g|MY acting on 
weight Y. Measurements of the 
radius R, the period T, and the 
masses of the two weights lead 
to a direct experimental test of 
Eq. 15-5. 
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by the sun on the planets. This model relates the magnitude of the force 
acting on each planet to the distance between the sun and the planet. 

Motion in the solar system. Astronomy, the oldest science, has been 
important for millenia, because it has enabled us to anticipate seasonal 
changes and to schedule agricultural activities. The observed motion of 
the sun, moon and stars around the earth was first attributed to gods and 
goddesses. Later, Greek philosophers explained the motion by means of 
celestial concentric rotating spheres to which the heavenly bodies were 
attached. The earth was at the center of all the spheres; hence, this 
model is called geocentric (earth-centered). This model seems intui-
tively reasonable, and it became generally accepted. 

However, the motion of the sun and the planets in the sky was more 
complicated than that of the stars. In the third century BC, a Greek as-
tronomer, Aristarchus of Samos, suggested that "the fixed stars and the 
sun remain unmoved, that the earth revolves about the sun on the cir-
cumference of a circle, the sun lying in the middle of the orbit" (as re-
ported by Archimedes in The Sandreckoner). We will call this model 
heliocentric (sun is helios in Greek, thus sun-centered). This model at-
tracted little attention throughout ancient and medieval times.  

Ptolemy's geocentric theory. The major trend of ancient thought 
elaborated the geocentric point of view, which offered three great ad-
vantages: first, philosophical doctrines required that the earth be sta-
tionary at the center of the universe; second, the spherical motion of the 
heavenly spheres was a "natural" and perfect motion; third, the data 
gathered by observers on earth could be used for the prediction of stel-
lar movements in a geocentric reference frame but were not sufficiently 
accurate to permit their correct transformation to a heliocentric refer-
ence frame. Claudius Ptolemy developed this theory to a perfection that 
served mankind until it was abandoned in favor of the heliocentric the-
ory after more than fourteen hundred years. 

The Copernican heliocentric theory. One of the weaknesses of the 
Ptolemaic theory was the need to make it more complicated as astro-
nomical data improved in accuracy. In fact, Ptolemy himself recognized 
that not all celestial spheres moved around the earth as center of rota-
tion. In the sixteenth century, Nicolaus Copernicus revived the helio-
centric picture of the universe and thereby touched off a controversy 
between religious dogma and science that lasted for a hundred years. 
Copernicus realized that the rotation of the earth on its axis could ex-
plain the motion of the fixed stars, which he placed on an immobile 
celestial sphere. In his theory, planets were on smaller concentric 
spheres, with the sun at the center of the universe. Unlike earlier pro-
ponents of the heliocentric point of view, however, Copernicus had the 
data with which he could find the period of motion and the orbital ra-
dius of each planet around the sun. His unit of distance was the distance 
between the sun and the earth, known as the astronomical unit (AU). 
Copernicus' values for the planets' periods and orbital radii were very 
close to the modern values (Table 15.1). 

Copernicus succeeded in showing that heliocentric theory was as

 ". . . the natural motion of 
the earth as a whole, like 
that of its parts, is towards 
the centre of the Universe; 
that is the reason why it is 
now lying at the centre . . . 
light bodies like fire, whose 
motion is contrary to that of 
the heavy, move to the ex-
tremity of the region which 
surrounds the centre."  
 Aristotle, On the Heavens,  
 4th century B.C. 

Claudius Ptolemy (approx. 
140 A.D.) was probably an 
Egyptian Greek who lived 
for a period in or near 
Alexandria in Egypt (127-
ca. 150 A.D.). His two great 
works, the Almagest (on 
mathematical astronomy) 
and the Geography (on 
mathematical geography) 
remained the standard text 
references in their respec-
tive fields for over 14 centu-
ries. 

Nicolaus Copernicus (1473-
1543), a Polish astronomer, 
proposed replacing the 
complex geocentric universe 
with a simpler, sun-centered 
(heliocentric) system. Un-
fortunately, to advance such 
views in the early 16th cen-
tury was heresy, and even 
Martin Luther spoke of Co-
pernicus as "the fool who 
would overturn the whole 
science of astronomy." 
While the heliocentric sys-
tem was simpler, the exist-
ing observations did not de-
cisively favor either system, 
and there was not yet a con-
sensus among scientists. 
Consequently, Copernicus 
would not permit his book 
on the subject to be pub-
lished until he lay on his 
deathbed. 
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good as geocentric theory in summarizing the astronomical data. His 
theory, however, did not have a decisive scientific advantage; it merely 
appealed to a different sense of order or simplicity than did the geocen-
tric theory. It is now recognized that Copernicus started a scientific 
revolution by advancing a new interpretation of data, but that others, 
especially Isaac Newton, really exploited the new point of view. 

Kepler's laws. New and especially accurate data on the motion of 
Mars were collected by the Danish astronomer Tycho Brahe (1546-
1601) and were left for his assistant Johannes Kepler to analyze. After 
painstaking work, Kepler concluded that Mars did not carry out uni-
form circular motion, either geocentric or heliocentric. He therefore 
used the observations of Brahe, as a surveyor would use his sightings, 
to identify the geometrical shapes of the orbits of the earth (the sur-
veyor's "base") and of Mars relative to the sun as fixed point. 

Kepler's conclusions are summarized in three laws that bear his name. 
The first law states that the planets' orbits have the shape of ellipses, 
with the sun located at one focus of the ellipse (Fig. 15.7). Actually, the 
ellipses of most planets are quite close to circles, in that the two diame-
ters differ in length by only a few percent. This fact explains in part 
why the model of circular orbits had not been discarded earlier. Ke-
pler's second law points out that a planet does not move with the same 
speed along all parts of its orbit. It moves faster than average when it is 
close to the sun (point A, Fig. 15.7) and slower when it is far from the 
sun (point B, Fig. 15.7), in such a way that the line connecting it to the 
sun sweeps out equal areas in equal times. Here also the deviations 
from uniform motion are so small that they were not detected before 
Brahe's accurate observations. 

TABLE 15.1  DATA ON THE SOLAR SYSTEM 
 
Planet Radius Mean radius of orbit  Period (Radius)3 (Period)2 
 (m) (m) (AU*) (years) (AU*)3 (years)2 
 
Mercury  2.5 × 106 5.8 × 1010 0.39 0.24 0.059 0.058 
Venus 6.1 × 106 1.1 × 1011 0.72 0.62 0.38 0.38 
Earth 6.4 × 106 1.5 × 1011 1.00 1.00 1.00 1.00 
Mars 3.4 × 106 2.4 × 1011 1.52 1.9 3.5 3.6 
Jupiter 7.2 × 107 7.8 × 1011 5.2 11.9 140. 141. 
Saturn 5.8 × 107 1.4 × 1011 9.6 30. 890. 900. 
Uranus** 2.7 × 107 2.9 × 1011 19.2 84. 7100. 7000. 
 
*AU stands for astronomical unit, a distance measure equal to the mean orbital radius of the 
earth (1 AU = 1.5 × 1011 m). 
**Not known in Copernicus' and Newton's times. 

Johannes Kepler (1571-1630) 
was born in Weil der Stadt, 
Germany, and studied 
mathematics at the University 
of Tübingen. After obtaining 
his degree, Kepler became 
Tycho Brahe's assistant at 
Prague and eventually suc-
ceeded him as Court Mathe-
matician. Kepler argued for 
the Copernican system in his 
first book The Cosmographic 
Mystery (1597). Through his 
studies of the orbit of Mars, 
Kepler arrived at his first two 
laws, and he published his 
findings in the New Astron-
omy or Celestial Physics 
(1609). The third of his great 
laws was announced in The 
Harmonies of the World 
(1619). In all of his research, 
Kepler benefited immensely 
from the huge collection of 
accurate, long-term astro-
nomical measurements that 
Tycho bequeathed to him. 
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Kepler's first two laws apply to the motion of each planet separately. 
Kepler's third law relates the motions of all the planets together. In 
modern terminology, the third law states that the planetary period (in 
years) to the second power equals the mean orbital radius (in astro-
nomical units) to the third power (Eq. 15.6a). Note how the orbital mo-
tion of the earth furnishes the units of distance and time. Note also that 
Kepler's third law, though published a whole decade after his first two 
laws, made use basically of the data of Copernicus and did not depend 
on Kepler's other discoveries. For later use, we state Kepler's third law 
in ordinary units (meters, seconds) in Eq. 15.6b. 

The nature of the sun and planets. One of the important assumptions 
of geocentric theory was that terrestrial matter was essentially different 
from the celestial. The latter was perfect, uniform, and spherical in 
shape and motion; the former was irregular, rough, and massive, falling 
toward the ground when unsupported. Copernicus had addressed him-
self to a description of the relative motion of the heavenly bodies with-
out concerning himself about its causes. Kepler's search for simple 
mathematical patterns in the description had been motivated by his vi-
sion that a single force exerted by the sun was responsible. However, he 
had no quantitative techniques for analyzing this problem, but he 
speculated that magnetism might be the agency. In his view, the planets 
and the sun were magnets. 

The first direct observations of heavenly bodies to give evidence of 
their nature were made by Galileo with a telescope that had been re-
cently invented and that he had improved. Galileo examined the moon, 
the sun, the Milky Way, the planet Jupiter, and the planet Venus. 

What Galileo saw supported his belief in the heliocentric Copernican 

 
Figure 15.7  Kepler's Laws 
Kepler's First Law: The orbit of a 
planet around the sun is in the 
shape of an ellipse with the sun at 
one focus. 
 
Kepler's Second Law: the line from 
the sun to the planet sweeps out 
equal areas in equal times. 

3

planetary period 
              (years)      = 
orbital radius (AU) = R

    ( )

planetary period 
                (sec)        = 
orbital radius (m)    = R

  (3 10

R a

−

=

= ×

Equation 15.6
(Kepler's Third Law)

2

2

T

T

T

T 18 3) ( )   R b

 

Figure 15.8 (below)  Two 
drawings made by Galileo 
from his telescopic observa-
tions of the moon. These 
drawings showed the moun-
tains and valleys on the moon 
and directly contradicted ex-
isting beliefs. He published 
them in his "best seller" 
Sidereus Nuncius (The Starry 
Messenger, 1610). Galileo's 
extraordinary observations, 
published as a 63-page pam-
phlet in popular Italian 
rather than the traditional 
Latin, provided clear-cut 
support for the heliocentric 
system over the then widely-
accepted geocentric theory. 
Unfortunately, the geocentric 
system had been incorporated 
into Catholic dogma, and at 
the same time as Galileo was 
advocating the heliocentric 
system, the Church was be-
coming more conservative as 
Protestantism grew. Galileo's 
conflict with the Church fi-
nally led to his "trial" by the 
Inquisition, the threat of tor-
ture, and his public "confes-
sion" to the crime of heresy! 
This was, and remains, an 
unforgettable episode, a sear-
ing reminder of the impor-
tance of the struggle required 
to develop civil society with 
an independent justice system 
and limits on religious au-
thority. 
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model of the solar system, for many reasons: 1. The moon exhibited a 
rough landscape with mountains and valleys much like the earth and 
was not perfect, spherical, and uniform (Fig. 15.8). 2. The sun's disk 
likewise was not uniformly bright, but showed dark "spots" that moved 
on its surface; this further contradicted the idea of celestial perfection 
and strongly suggested that the sun itself was rotating. 3. The Milky 
Way was not a continuous ribbon of light but was made up of many 
faint stars, individually invisible, that could not conceivably serve the 
purpose of providing light for men to see at night. 4. The planet Jupiter 
was surrounded by four small bright stars that, Galileo showed, were 
really satellites revolving around Jupiter much like the moon revolves 
around the earth. This was direct observation of orbital motion not cen-
tered on the earth. 5. Venus exhibited moon-like phases; thus Venus 
must reflect sunlight like the moon and was not self-luminous, again 
contradicting Aristotle's assertions about celestial objects. 6. Finally, 
Venus showed great variations in apparent size and hence in distance 
from the earth; therefore, Venus cannot move in a circular orbit around 
the earth, as required by the geocentric system. On the other hand, as 
Galileo enthusiastically explained, the Copernican system could easily 
explain every detail of his observations of Venus. In the last hundred 
years, spectroscopy has offered final chemical confirmation of Galileo's 
hypothesis that "terrestrial" and "celestial" matter shared the same fun-
damental nature and thus were subject to the same scientific laws. 

Galileo publicized his findings widely, but he did not convince most 
proponents of the geocentric view, many of whom simply refused to 
accept the telescopic observations as evidence. Because his findings 
were believed to threaten the Church and the existing social order, Gali-
leo was required to cease his teaching and even to deny the Copernican 
theory. Nevertheless, the process of free inquiry had begun to show 
significant results, and the effort to understand matter and motion both 
in the heavens and on earth had begun. 

The Newtonian theory of the solar system. On the basis of his theory 
of motion, Newton investigated the shapes of particle orbits around an 
attracting center that subjected the particles to a centripetal force. The 
first result was that the lines from a particle to the attracting center 
swept out equal areas in equal times. Since this finding was in accord 
with Kepler's second law, it was clear that planetary motion was caused 
by a centripetal force attracting the planets to the sun and that there was 
no need for other forces propelling them along their orbits. 

Newton's second result concerned the magnitude of the centripetal 
force. By following a line of reasoning similar to that in Section 15.1, 
Newton found a mathematical model for the centripetal acceleration of 
a particle moving in an elliptical orbit. The centripetal acceleration did 
not have a constant magnitude at all points of the orbit, but varied in-
versely as the second power of the particle's distance from the attract-
ing center. Consequently the required centripetal force, proportional to 
the acceleration according to Newton's second law, also must vary in-
versely as the second power of the distance. Thus Kepler's first law re-
garding the shape of the orbit permitted Newton to infer

Galileo Galilei (1564-1642) 
was born in the year of Shake-
speare's birth and Michelan-
gelo's death. By the age of 25, 
he was a teaching member of 
the University of Pisa. Gali-
leo's intense criticism of Aristo-
telian natural philosophy pro-
voked a controversy that drove 
him to Padua in 1592, where 
he constructed his first tele-
scope and began his battle on 
behalf of the heretical Coperni-
can theory. His fame became so
widespread that he was even 
recalled to Pisa as Court 
Mathematician and Philoso-
pher. In spite of prohibitions 
from the Church, Galileo pub-
lished his Dialogue Concerning 
the Two Chief Systems of the 
World, which praised Coperni-
can theory at the expense of 
orthodox Ptolemaic theory. 
Galileo was again brought be-
fore the Inquisition. Weakened 
by age and fearing for his 
safety, he publicly abjured his 
belief in the heliocentric system 
and pledged not to discuss nor 
write about it again. However, 
Galileo survived to publish his 
masterpiece on motion on 
earth: Discourses Concerning 
Two New Sciences (1638).  
 
Galileo's extraordinary exam-
ple of the value of individual 
freedom in scientific inquiry, 
and the high price he paid for 
it, stimulated the search for a 
less destructive relationship 
between science and religion. 
Today, we sometimes take free-
dom of inquiry and freedom of 
religion for granted, but this 
was (and is) not always so. 
Maintaining the uneasy bal-
ance between reason and faith 
(or freedom and security) re-
quires ongoing vigilance and 
hard work. 
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the magnitude of the force, just as Kepler's second law had permitted 
Newton to infer the direction. 

Newton was also able to show that Kepler's third law led to the con-
clusion that the force holding the planets in their orbits varied inversely 
as the second power of the distance from the sun to the planet. For this 
reasoning, the planetary orbits can be described approximately as cir-
cles. Then the centripetal force acting on the planets is given by Eq. 
15.7 (from Eq. 15.5) in terms of the orbital radius and period. Now, 
since Kepler's third law relates the period to the radius (Eq. 15.6b), ref-
erence to the orbital period can be eliminated from Eq. 15.7 to give a 
mathematical model for the centripetal force that depends only on the 
radius (Eq. 15.8). You can see that the force varies inversely as the sec-
ond power of the orbital radius and directly as the mass of the planet. 
Kepler's first and third laws, therefore, led Newton to the same conclu-
sion, a result that must have increased Newton's confidence in his find-
ings. 

Newton furthermore proposed a dramatic solution to the problem of 
the nature of the interaction. Kepler had speculated that the force was 
magnetic, and Descartes had worked out a "theory of vortices" in which 
the interaction was transmitted by a swirling fluid. But Newton argued 
that the interaction was gravitational, that it was of the same type as the 
interaction that causes an apple on earth to fall to the ground, that it 
varied inversely as the second power of the distance of the particle 
from the attracting center, and that it varied directly as the mass of the 
particle. The gravitational force exerted by the sun on a planet is given 
in Eq. 15.8, and the force exerted by other gravitating bodies (as by the 
planets or by their satellites) is given by a similar mathematical model, 
but with a different numerical factor. To justify this proposal, Newton 
showed that his theory could correctly account for the orbital motion of 
the moon as it is described in Table 15.2. 

The force of gravity exerted by the earth governs the motion of the 
moon around the earth. The acceleration caused by this force is equal to 
the acceleration of gravity; at the surface of the earth, this acceleration 
is 10 meters per second per second (Eq. 14.14). As the force of gravity 
decreases with increasing distance from any gravitating body, the ac-
celeration of gravity decreases likewise, inversely as the second power 
of the distance. The mathematical model in Eq. 15.9 describes this 
variation and gives the correct value for the acceleration of  

TABLE 15.2 DATA ON EARTH SATELLITES 
 Orbital radius* Orbital period 
Satellite 
 (m) (earth radii) (sec) (days) 
Moon  3.8 × 108 60.  2.3 × 106 27.3  
Syncom 4.3 × 107 6.7 8.6 × 104 1.0  
Explorer 1 6.6 × 106 1.03 5.1 × 103 0.062 
*The radius of the earth is a convenient unit to use for describing 
distances to earth satellites.  
 

"Hitherto [I] have ex-
plained the phenomena 
of the heavens and of our 
sea by the power of grav-
ity . . . and even . . . the 
remotest [motions] of the 
comets . . . But I have not 
been able to discover the 
cause of [the] properties 
of gravity from phenom-
ena, and I frame no hy-
potheses; and hypothe-
ses, whether metaphysi-
cal or physical, whether 
of occult qualities or me-
chanical, have no place 
in experimental philoso-
phy." 
 Isaac Newton  
 Principia, 1687 
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gravity at the earth's surface, at a distance of one earth radius from the 
earth's center (Example 15.1). The acceleration of gravity predicted by 
this theory at the position of the moon is much smaller, as calculated 
also in Example 15.1. 

What is the observed centripetal acceleration of the moon? This can 
be calculated from the moon's orbital data and the mathematical model 
in Eq. 15.4. It is found to agree closely with the prediction (Example 
15.2), thus lending further support to Newton's theory of gravitation as 
the binding force of the solar system. This was the final blow to the 
ancient view, according to which terrestrial and celestial phenomena 
were qualitatively different.  

This extraordinary conceptual transformation (some would say revo-
lution) came about as the result of two key developments: first, new 
mathematical techniques, including the rectangular coordinates of Des-
cartes and methods of dealing with infinitesimal quantities invented by 
Newton and Leibniz (the calculus), and second, Galileo, Brahe, Kepler, 
Hooke, Huygens and others' use of experiments as a way to gather data 
and thus understand the details of real world motions. This is, indeed, 
an example of how a scientific breakthrough really rests squarely on the 
contributions of many other individuals. 

Law of universal gravitation. Laboratory experiments to test New-
ton's mathematical model for the gravitational force had to await the 
construction of the delicate apparatus that was necessary. About the 

Henry Cavendish (1731-
1810) inherited a fortune 
through the death of an uncle 
and withdrew from society to 
devote himself to scientific 
pursuits. Unfortunately, the 
same shyness that produced 
withdrawal from society also 
made him reluctant to publish 
his manuscripts. Although 
Cavendish was known as a 
chemist, he was the first to 
measure gravitational forces 
directly. His unpublished ex-
periments were later found 
(by Maxwell in 1879) to have 
anticipated some of the elec-
trical discoveries of Coulomb 
and Faraday. 
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year 1800, Henry Cavendish succeeded by a method described theo-
retically by Newton and illustrated in Fig. 15.9. Cavendish found what 
Newton had surmised, that the gravitational force of interaction is di-
rectly proportional to the product of the masses of the two interacting 
bodies and varies inversely as the second power of the distance be-
tween them (Eq. 15.10). The gravitational constant has a small numeri-
cal value in the units of newtons, kilograms, and meters because the 
force of gravity is extremely weak unless one of the two interacting 
bodies has a very large mass. Equation 15.10 is called the law of uni-
versal gravitation because it describes the ability of all objects, terres-
trial and celestial, to participate in gravitational interaction. Applica-
tions of the law of universal gravitation are described in Examples 15.4 
and 15.9 at the end of this chapter. 

15.4 The pendulum 
The simple pendulum model. A pendulum is a system that carries out 

periodic swinging motion in gravitational interaction with the earth 
(Fig. 15.10). At equilibrium, the system hangs in the vertical direction. 
When the system is released after being displaced from its equilibrium 
position, it swings back through the equilibrium position

Figure 15.9  Cavendish's experiment to measure the force of gravity 
between lead spheres A-B and  A'-B'. The top end of the wire is 
clamped firmly. As the rod rotates around the wire due to the gravi-
tational attraction between the lead spheres, the bottom end of the 
wire is twisted elastically until it comes to mechanical equilibrium 
subject to the elastic and gravitational forces. The position of the 
rod is recorded accurately, and the spheres B and B' are then 
moved to the other side of spheres A and A'. The rod then rotates 
and comes to equilibrium at a slightly different position. The small 
change in the angular position of the rod is measured by using a 
light beam reflected from a mirror mounted on the rod. 
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Figure 15.10  A pendulum consists 
of a massive object that is sup-
ported, but is free to swing in the 
gravitational field. 
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to the other side. A simple pendulum is a working model for a pendu-
lum; it consists of a particle supported by a massless string (Fig. 15.11). 
Clearly, the simple pendulum is a better model for the first pendulum 
illustrated in Fig. 15.10 than for the other two. A simple pendulum can 
swing back and forth; it can also be given a sideways push and let 
swing in an orbit around the equilibrium position (Fig. 15.12). Not all 
real pendulums can carry out such motion, however (refer to Fig. 
15.10). 

Clearly, some energy is stored in the swinging pendulum. As it gradu-
ally transfers energy to the air through which it moves and to the sup-
port, where there is the inevitable friction, the pendulum's swings be-
come smaller and smaller and finally stop altogether. With some care, it 
is possible to make a pendulum that swings very many times—50 or 
100 times—before coming to rest. The loss of energy during one swing, 
therefore, is small. It is possible to describe the motion as being ap-
proximately periodic (each swing almost repeats the motion during the 
prior one). The simple pendulum model does not lose energy to other 
systems, and executes genuine periodic motion. In the following dis-
cussion we will first make a mathematical model for the motion of a 
simple pendulum that executes a circular orbit (Fig. 15.12) and then for 
one that oscillates through a small angle (Fig. 15.11). 

Simple pendulum in a circular orbit. Huygens already had studied 
this system extensively when he was developing pendulum clocks in 
the seventeenth century. The particle in the simple pendulum is subject 
to interaction with the earth and with the string. The net force is ob-
tained by adding the two forces. The force of gravity is given in Eq. 
15.11. The force exerted by the string is of unknown magnitude, but we 
do know that it is directed along the string. The net force is a centripetal 
force directed horizontally. These facts are illustrated in Fig. 15.13 and 
are sufficient to permit a calculation of the magnitude of the net

Figure 15.11 The simple pendu-
lum is a working model for a real 
pendulum. 

Figure 15.12 The simple pendulum par-
ticle can also swing in an orbit around 
the equilibrium position. 

Christian Huygens (1629-
1695), the great Dutch con-
temporary of Newton, 
made thorough studies of 
centripetal acceleration 
while investigating pendu-
lum motion. To Newton's 
chagrin, Huygens pub-
lished his studies first in 
1673. 
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force by the procedure illustrated in Fig. 11.12 to Fig. 11.14. Since the 
force triangle (Fig. 15.13b) and the right triangle formed by the string 
and the vertical (Fig. 15.13a) are similar, the net force magnitude is to 
the gravitational force magnitude as the radius is to the vertical side 
(Eq. 15.12). The net force could be measured with a spring scale that is 
used to hold the pendulum in a deflected position (Fig. 15.14). 

The net force given in Eq. 15.12b is then, according to Newton's sec-
ond law, equal to the centripetal force required for circular motion (Eq. 
15.5), resulting in Fig. 15.13. We find, therefore, that the radius of the 
orbit and the particle mass cancel out, leaving a relations between the 
length of the pendulum, its period, and the gravitational intensity (Eq.

Figure 15.13  Theory of the simple pendulum. 
(a) Diagram of the pendulum, showing the string length L, the angle θ, and the 
radius of the circular orbit R. The triangle ABC is a right triangle with acute 
angle θ. 
(b) Force diagram for the simple pendulum. The dotted lines indicate the direc-
tions of the two unknown forces. Their magnitudes are found from the force addi-
tion formula, F(net) = FG+ F(string). Triangle abc is similar to triangle ABC. 
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Figure 15.14  Use of spring 
scale to measure the net force 
on an orbiting pendulum. 
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15.14). For a very small deflection angle (θ), the radius (R) is small 
compared to the length of the string (L), so that the square root in Eq. 
15.14 can be approximated by the length of the string (Eq. 15.15). You 
can rearrange this formula to express the length in terms of the period 
(Eq. 15.16a) or the period in terms of the length (Eq. 15.16b). A graph 
of this relation, called the law of the pendulum (discovered by Galileo), 
is shown in Fig. 15.15. Since the mass canceled out, the relation holds 
for every simple pendulum at the surface of the earth with a small angle 
of deflection (θ). Equation 15.16b shows that the period is completely 
independent of the mass of the particle and, for small angles of swing, 
the period is also independent of the angle. Thus if a pendulum is 
started at a small angle, the period will be constant as the pendulum 
gradually comes to rest. Galileo describes how he first discovered this 
aspect of the law of the pendulum by using his pulse to time the swings 
of a hanging church lamp! 

The oscillating pendulum. The oscillating motion of a pendulum is 
observed when the particle is displaced to the side and then released 
with zero initial speed (Fig. 15.10). The oscillating motion is more dif-
ficult to describe mathematically than the circular motion of the orbit-
ing pendulum because the magnitude of the velocity and acceleration 
are changing all the time. We will therefore not analyze it directly. As 
long as the angle of deflection (θ) is small, however, the same mathe-
matical models and the same law of the pendulum (Eq. 15.16 and Fig. 
15.15) applies to the oscillating pendulum as to the orbiting pendulum. 

Applications. Many familiar applications of the simple pendulum 
make use of the regularity of the orbital or oscillating motion. Both a 
pendulum clock and a child's swing are characterized by a rhythm that 
satisfies the law of the pendulum. The period does not change with the 
width of the swing or the mass of the particle (child). Only

Figure 15.15  Graphical representation of the law of the pendulum at the sur-
face of the earth. The algebraic form of this law is F = 2.0 L , where the pe-
riod T is measured in seconds and the length L in meters. 

"As to the times of vibration 
of bodies suspended by 
threads of different lengths, 
they bear to each other the 
same proportion as the 
square roots of the lengths of 
the thread; or one might say 
the lengths are to each other 
as the squares of the times; so
that if one wishes to make the 
vibration-time of one pendu-
lum twice that of another, he 
must make its suspension four 
times as long." 
 Galileo Galilei 
 Dialoghi delle Due  
 Nuove Scienze, 
 1638 
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changing the length of the pendulum's support or the gravitational in-
tensity changes the period. 
15.5 Elastic oscillators 

A weight executes periodic motion when it bounces up and down at 
the end of a spring. Other examples of periodic motion caused by elas-
tic objects were mentioned in the introduction to this chapter: the iner-
tial balance we used in Section 3.4 to define inertial mass (Fig. 15.16), 
the bird swaying on a branch of a tree, and the oscillators in an elastic 
medium, which make wave propagation possible. 

We will investigate the motion of a model elastic oscillator in which a 
massive particle is moving subject to interaction with a "massless" elas-
tic object (a spring, a tree branch) whose behavior is described by 
Hooke's law (see Section 11.6 and Equation 11.8, in left margin). The 
one-particle Newtonian approach is adequate for such a working 
model. 

The massive particle has an equilibrium position from which it may 
be displaced (Fig. 15.16). When it is displaced, the elastic object exerts 
a restoring force that pulls the particle back to its equilibrium position. 
For elastic objects described by Hooke's law (Section 11.6), the net 
force is proportional to the displacement (Eq. 11.8). This situation is 
similar to the one you encountered with the pendulum (Eq. 15.12b), 
where the net force was proportional to the radius of the orbit. We 
therefore select the simple pendulum as an analogue model for the elas-
tic oscillator (Table 15.3). 

From the simple pendulum analogue you obtain the mathematical 
model in Eq. 15.17, according to which the period does not depend on 
the displacement, but does depend on the mass of the particle and on 
the strength of the spring. The period increases with greater mass but 
decreases for stronger springs. This result is consistent with what we 
found qualitatively in Section 3.4 for the effects of inertia (mass) on the 
period of the inertial balance. 

The most serious limitation of the model is caused by the neglect of 
the mass of the spring. When the mass of the "massive" particle is equal 
to zero (no particle is placed on the spring), the model predicts a period 
of zero seconds. Even an unloaded spring or branch has inertia and 
therefore an oscillation period unequal to zero, however. 

Nevertheless, the model is extremely useful. It can be applied not 
only to a leaf spring as in the inertial balance, but also to helical springs 
and coil springs (Fig. 11.23). As a matter of fact, Eq. 15.17 is used to

Figure 15.16 One-particle model for an 
elastic oscillator, The particle of mass M 
is displaced to a distance ∆s from its 
equilibrium position. 
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determine the force constant of very delicate springs in some spring 
scales through a measurement of their oscillation periods. Once the 
force constant is known, the spring scale can be calibrated without re-
sort to the complicated procedure described in Section 11.2. Cavendish 
used this technique when he measured the force of gravity between lead 
spheres in his laboratory (Fig. 15.9), and Coulomb used it when he 
measured the electrical force between charged spheres (Section 11.5). 

Summary 
The periodic motion of interacting objects played an important part in 

the history of science. The periodic motion of the planets in the solar 
system stimulated Newton's development of his theory of moving bod-
ies and the law of gravitation (Eq. 15.10). The mathematical model for 
centripetal force (Eq. 15.18) was an important intermediate step that 
enabled Newton to use Kepler's laws of planetary motion in his investi-
gations. The simple pendulum and the elastic oscillator are systems that 
are used extensively in the regulation of clocks and in scientific studies. 
The mathematical models governing their motion are given in Eqs. 
15.16b and 15.17, respectively. 

Additional examples 
EXAMPLE 15.3. Calculate the orbital period of a low-altitude satellite 

(Table 15.2). (Assume that the satellite is sufficiently close to the earth 
that the radius of its orbit can be assumed to be the same as the radius 
of the earth.) 
Data: 

|g| = 10 newtons/kg; R = 6.6 x 106 m. 
Solution: Near the surface of the earth, the gravitational intensity is 10 
newtons per kilogram. This is equal to the satellite's centripetal accel-
eration.

Equation 15.18 (from Eq.15.5) 
(centripetal force) 

centripetal force (newtons)
   = |F| 
radius of circular  
 motion (m) = R 
period of circular  
 motion (sec) = T 

24 MRπ=F
T 2  

Equation 15.16b 
(Law of the pendulum) 
 T 2 Lπ≈

g
 

Equation 15.17 
(elastic oscillator) 
inertial mass (kg)  =  M 

strength of interaction (force 
constant, newtons/m) = κ  

 T  2 κ
Mπ=  
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List of new terms 
centripetal acceleration heliocentric simple pendulum 
centripetal force law of universal law of the pendulum 
geocentric  gravitation elastic oscillator 
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List of symbols 

Problems 
1. Propose two operational definitions of time interval that could have 

been used before the invention of clocks (for example, in ancient 
times). 

2. Undertake library research to determine the history of clocks, espe-
cially the gradual improvement of clock accuracy. Point out some of 
the important uses of clocks at various stages of the development. 

3. Calculate the average velocity of a particle moving in a circular orbit 
of 1 meter radius at a constant speed of 6.28 meters per second. Use 
the following time intervals: (a) 1 second; (b) 5/6 second; (c) 2/3 
second; (d) 1/2 second; (e) 1/3 second; (f) 1/6 second; (g) 1/12 sec-
ond. 

4. (a) Make a graph of the magnitudes of the average velocities in Prob-
lem 3 to show their dependence on the time interval. 
(b) Extrapolate to zero time interval on your graph to find the 
magnitude of the instantaneous velocity. 
(c) Compare the result with that calculated according to Eq. 15.2. 

5. Calculate the average acceleration of a particle moving in a circular 
orbit of 1 meter radius with a constant speed of 6.28 meters per sec-
ond. Use the following time intervals: (a) 1 second; (b) 5/6 second; 
(c) 2/3 second; (d) 1/2 second; (e) 1/3 second; (f) 1/6 second; (g) 
1/12 second. 

6. (a) Make a graph of the magnitudes of the average accelerations vs. 
the time interval in Problem 5 to show their dependence on the time 
interval.  
 

a acceleration π 3.1415... 
|a| acceleration magnitude F force 
v velocity |F| force magnitude 
|v|  velocity magnitude FG force of gravity 
v  speed M mass 
vav  average speed G gravitational  
    constant 
s position g gravitational 
     intensity 
∆s displacement   (acceleration of 
∆s distance   gravity) 
∆t time interval L length of simple 
T period   pendulum 
R radius of circular θ deflection angle 
  orbit κ force constant 
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(b) Extrapolate to zero time interval on your graph to find the mag-
nitude of the instantaneous acceleration. 
 (c) Compare the result of the extrapolation with that calculated from 
Eq. 15.4. 

7. The orbital data for the four moons of Jupiter (Io, Europa, Ganymede 
and Callisto) discovered by Galileo are given below. Determine 
whether they satisfy Kepler's third law. The units of distance and 
time are the orbital radius and period of the innermost moon, which 
are 4 x 108 meters and 42.5 hours, respectively 
 Io Europa Ganymede Callisto 
Orbital radius 1.0 1.6 2.5 4.5  
Orbital period 1.0 2.0 4.0 9.5  
Optional: Find the mass of Jupiter. 

8. (a) Find the centripetal acceleration of a 40-kilogram child on a 
merry-go-round. The child is at a distance of 5 meters from the cen-
ter of the merry-go-round, which turns at a rate of six revolutions 
per minute. 
(b) Find the centripetal force on this child. 
(c) What object exerts this centripetal force? 

9. (a) Obtain or construct an apparatus like that shown in Fig. 15.6 and 
conduct experiments to test the mathematical model for circular mo-
tion (Eq. 15.5). 
(b) Discuss some of the sources of experimental error in this ex-
periment. 

10. Consult references to determine Copernicus' reasons for preferring 
a heliocentric over a geocentric model for the solar system. Report 
and discuss your conclusions. 

11. Consult references to find the basis on which Kepler tried to explain 
planetary motion by forces. Report and discuss his approach. 

12. Find the mass of the sun by using data on planetary motion. 
13. Explain why the law of gravitation and the moon's orbit around the 

earth do not allow you to calculate the moon's mass. 
14. Verify that the data on the Syncom satellite (Table 15.2) are com-

patible with the law of gravitation. Use the same method that New-
ton used, as explained in Section 15.3. 

15. Suppose the force of attraction between objects varies inversely as 
the radius, |F| = k/R. What is the form of Kepler's third law appro-
priate to orbital motion of particles subject to this force? 

16. Give four examples from everyday life of systems to which the 
simple pendulum model should apply. 
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17. Test one of the systems mentioned in your answer to Problem 16 to 
determine whether the law of the pendulum applies to it. 

18. A large pendulum in a science museum is found to have a period of 
8 seconds. How long is the wire supporting it? 

19. Find the period of each of the following systems allowed to swing 
naturally: (a) your right arm held stiffly; (b) your left leg held 
stiffly; (c) your right forearm (hold the upper arm stationary). 
Compare and discuss your findings and relate them to your speed 
of walking. (Hint: Measure the time for 20 swings and divide by 20 
to find the period.) 

20. Give four examples of elastic oscillators from everyday life. 
21. Experiment with one of the systems you identified in Problem 20 to 

find its force constant by: (a) attaching weights or a spring scale 
and observing the elastic displacement (direct measurement); and 
(b) making an elastic oscillator and measuring the period (indirect 
method). 

22. Write a critique concerning the application of Eq. 15.17 to two of 
the systems you selected in answer to Problem 20. 

23. (a) Explain under what circumstances you would or would not ex-
pect an object hanging from a rubber band to have a period de-
scribed by the mathematical model in Eq. 15.17.  
(b) Test your ideas by experimenting with such an oscillator. 

24. Calculate the centripetal acceleration of an object attached to the 
earth at the equator (due to the rotation of the earth). Compare your 
result to the acceleration of gravity. 

25. Identify one or more explanations or discussions in this chapter that 
you find inadequate. Describe the general reasons for your judg-
ment (conclusions contradict your ideas, steps in the reasoning 
have been omitted, words or phrases are meaningless, equations are 
hard to follow, . . .), and make your criticism as specific as you can. 
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